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Abstract

Deep learning models commonly benefit from data augmen-
tation techniques to diversify the set of training images. When
working with satellite imagery, it is common for practitioners
to apply a limited set of transformations developed for natural
images (e.g., flip and rotate) to expand the training set with-
out overly modifying the satellite images. There are many
techniques for natural image data augmentation, but given the
differences between the two domains, it is not clear whether
data augmentation methods developed for natural images are
well suited for satellite imagery. This paper presents an ex-
tensive experimental study on three classification and three
regression tasks over four satellite image datasets. We com-
pare common computer vision data augmentation techniques
and propose three novel satellite-specific data augmentation
strategies. Across tasks and datasets, we find that geomet-
ric transformations are beneficial for satellite imagery while
color transformations generally are not. Additionally, our
novel Sat-SlideMix, Sat-CutMix, and Sat-Trivial methods all
exhibit strong performance across all tasks and datasets.

Introduction
Machine learning allows us to harness satellite data for
a variety of applications with societal impact. For exam-
ple, convolutional neural networks can analyze greenhouse
gas emissions detected in satellite images and detect where
large emissions are occurring (Rolnick et al. 2022). Ma-
chine learning models trained on satellite images in data-
rich areas can be transferred to data-scarce areas to in-
form socioeconomic indicators, such as poverty (Jean et al.
2016). Neural networks have the capacity to model com-
plex interactions between species and their environments
which can be used to monitor biodiversity at large scales
(Chen et al. 2016; Davis et al. 2023). Population predictions
can be produced more frequently than censuses (Robinson,
Hohman, and Dilkina 2017). Predicting water quality from
satellite imagery has enabled higher-resolution (both spa-
tial and temporal) mapping and monitoring compared to tra-
ditional methods (Peterson, Sagan, and Sloan 2020). Crop
type maps produced from satellite images in areas where
labeled data is scarce can aid in humanitarian efforts (You
et al. 2017; Kerner et al. 2020).
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One limitation to more widespread modeling of satellite
imagery is the lack of annotated labels. While satellite data
archives greatly outweigh the amount of data in “large” ma-
chine learning datasets, satellite data paired with ground-
truth labels is scarce (Rolf et al. 2024) and collecting more
data is costly in time and/or financially (Zhu et al. 2018).
Methods designed for small datasets and methods that do
not require labeled data have been applied to satellite im-
agery, such as transfer learning (Jean et al. 2016), repre-
sentation learning (Jean et al. 2019; Neumann et al. 2019;
Rolf et al. 2021; Klemmer et al. 2023), meta-learning (Tseng
et al. 2021), and more recently, foundation models (Tseng
et al. 2023; Lacoste et al. 2024; Stewart et al. 2024). An al-
ternative method for handling the lack of annotated data is
data augmentation.

To date, data augmentation methods for images have
largely been developed for natural imagery (i.e., images
that compose common computer vision datasets like Ima-
geNet (Deng et al. 2009) and CIFAR (Krizhevsky, Hinton
et al. 2009)). Many of these data augmentation strategies in-
volve transforming the colors and/or geometry of the im-
ages. However, the differences between natural and satel-
lite images may complicate direct transfer of such methods
to satellite imagery. For example, some operations common
to natural image data augmentation distort topology (e.g.,
shear), which may be undesirable for satellite imagery (Yu
et al. 2017). Modifying spectral intensities for satellite im-
agery has been discouraged as certain tasks may rely on
the absolute pixel values (i.e., spectral information may be
more sensitive to changes in satellite images than natural
images) (Neumann et al. 2019; Hao et al. 2023). Moreover,
many color-distorting operations are only defined for 3-band
images, which renders them useless on datasets with more
than three spectral channels (i.e., multi- and hyperspectral
images) (Stewart et al. 2024). There is currently no con-
sensus on which image data augmentation strategies to use
for satellite imagery (Hao et al. 2023; Lacoste et al. 2024);
many studies use simple geometric transformations such as
flipping, rotating, and occasionally translating and random
cropping (Yu et al. 2017; Neumann et al. 2019; Abdelhack
2020; Lacoste et al. 2024).

In this paper, we experimentally compare data augmen-
tation techniques on a variety of satellite imagery analysis
tasks. Our main contributions are:



[1] We compare several existing methods from natural image
analysis on three classification and three regression tasks.
We find that data augmentation methods common in natu-
ral image analysis should not be directly applied to satellite
imagery. Our results indicate that geometric augmentations
consistently outperform color augmentations.
[2] We present three new satellite-specific data augmenta-
tion strategies: Sat-CutMix, Sat-Trivial, and Sat-SlideMix.
We show that all three methods are the top performing aug-
mentation methods across the tasks.
Our results can guide practitioners in selecting data augmen-
tation methods for satellite imagery analysis and may inspire
further development of appropriate data augmentation ap-
proaches for this domain.

Data Augmentation for Natural Images
Given an (x, y) data instance where x is an image and y is the
associated label, data augmentation can be broken into three
main categories: 1) label-preserving augmentations which
modify only x while maintaining y, 2) non-label-preserving
augmentations which modify both x and y in tandem, and
3) generative methods which create entirely new (x, y) data
instances.

Label-preserving augmentations consist of basic image
manipulations. Geometric and color operations are the most
common, but other methods include sharpness transforma-
tions (e.g., sharpen, blur), noise operations, and erasing pro-
cedures (Hao et al. 2023). Color augmentations manipulate
the color space of an image (e.g., modifying brightness or
contrast). Geometric operations maintain the color proper-
ties but modify the physical location of pixels (e.g., trans-
lating the image some number of pixels or horizontally/ver-
tically flipping an image). Geometric operations are useful
for combating positional biases but can become detrimental
if the image is modified so much that the label is no longer
present in the image (Shorten and Khoshgoftaar 2019).

Rather than applying these label-preserving augmenta-
tions individually, it is common to apply collections of them
or to use more complex methods which automatically de-
termine which transformations to apply. Three common au-
tomated augmentation methods are AutoAugment (Cubuk
et al. 2019), RandAugment (Cubuk et al. 2020), and Triv-
ialAugment (Müller and Hutter 2021). These automated
methods rely on the same set of image transformations, but
have different approaches for selecting which transforma-
tions to apply. AutoAugment is a reinforcement learning
method which learns a policy dictating the set of transfor-
mations to apply, the probability of applying each transfor-
mation, and the transformation’s magnitude (Cubuk et al.
2019). Two disadvantages of AutoAugment are that the
search phase is computationally expensive and the learned
policy is dataset-specific. RandAugment was developed as a
more computationally efficient method which replaces Au-
toAugment’s learned policy with two tunable parameters:
the number of sequential transformations to apply to a given
image and the magnitudes of those transformations (Cubuk
et al. 2020). TrivialAugment is even more efficient as it is
parameter-free and randomly selects a single transformation

and a corresponding magnitude for a given image (Müller
and Hutter 2021).

Non-label-preserving techniques generally consist of
mixing techniques and feature space interpolation. Mixing
techniques usually combine two images and produce a new
label that is scaled based on how the images are mixed. Mix-
ing images commonly results in unnatural looking images
(Shorten and Khoshgoftaar 2019). CutMix (Yun et al. 2019)
was proposed to overcome this issue. Rather than linearly or
non-linearly combining two images, CutMix samples a ran-
dom patch from one image and pastes it onto another. A new
label is then established based on the proportions of the two
classes in the resulting image (Yun et al. 2019).

Lastly, generative methods create new (x, y) pairs through
methods such as Generative Adversarial Networks (GANs),
flow models, and stable diffusion (Shorten and Khoshgof-
taar 2019; Trabucco et al. 2023). These methods have shown
success in the satellite imagery domain as well. GANs have
commonly been used to increase the training set size by gen-
erating synthetic aerial (Ma, Tang, and Zhao 2019), RGB
(Adedeji et al. 2022), multi- and hyperspectral (Zhu et al.
2018; Mohandoss et al. 2020), and synthetic aperture radar
(SAR) images (Guo et al. 2017; Hughes, Schmitt, and Zhu
2018). Abady et al. (2020) and Marı́n and Escalera (2021)
have performed image generation and style transfer for mul-
tispectral images and Khanna et al. (2023) used a generative
foundation model for satellite image creation. W

Data Augmentation for Satellite Images
While it is common to apply some level of data augmenta-
tion to satellite imagery, it is not clear which augmentations
are best suited for this domain. The geometric operations of
flipping, rotating, and clipping are most commonly used on
satellite imagery (Ding et al. 2016; Yang et al. 2016; Ghaf-
far et al. 2019) and some studies discourage using color-
based augmentations (Neumann et al. 2019; Hao et al. 2023;
Lacoste et al. 2024). However, a direct comparison of aug-
mentation methods is lacking. Color augmentations incen-
tivize deep models to learn object shapes and outlines and
to deemphasize color. Modifying the color properties of nat-
ural images is generally acceptable since images are cap-
tured in many different lighting conditions. With satellite
images however, the spectral information is more sensitive
to changes and altering it can lead to misinterpretations (Hao
et al. 2023). Additionally, many color augmentations (e.g.,
saturation and grayscale) are simply not defined for images
with more than three bands (Stewart et al. 2024), and there-
fore, cannot be applied to multi- or hyperspectral imagery.
It is also thought that correlations across channels in satel-
lite images are more important than in most computer vision
tasks (Illarionova et al. 2021).

Of the data augmentation strategies that have been pro-
posed for satellite imagery, many of the techniques have
been developed for specific applications. Oubara et al.
(2022) and Hao et al. (2023) present literature reviews on
such work. Some custom solutions include methods for su-
per resolution (Ghaffar et al. 2019) and SAR target recogni-
tion (Ding et al. 2016). Illarionova et al. (2021) developed
MixChannel which leverages the fact that satellites capture



Figure 1: CutMix versus our proposed Sat-CutMix and
Sat-SlideMix. CutMix creates one mixed image for ev-
ery original image in the batch while Sat-CutMix and Sat-
SlideMix create γ mixed images per original image. Sat-
CutMix combines two images by pasting a patch from
another image in the batch onto the original image. Sat-
SlideMix translates the original image in the H or W dimen-
sion and pastes the remaining portion onto the other side of
the image.

multiple images over the same location by randomly swap-
ping channels from a secondary image taken over the same
location with channels from the original image. A limita-
tion to MixChannel is that some regions simply do not have
enough cloud-free images over a given time period to pro-
vide a secondary image. Additionally, some tasks vary too
much over time (e.g., crops during the growing season) that
swapping channels from images taken at different dates may
in fact be detrimental. In contrast to these task or dataset-
specific methods, we propose three general-purpose data
augmentation techniques for satellite imagery.

Proposed Data Augmentation Methods
We present three general-purpose data augmentation strate-
gies tailored for satellite image analysis. We take inspiration
from CutMix, as it provides strong data augmentation while
maintaining the color properties of images. Sat-CutMix
modifies the CutMix method to be more suitable to satellite
imagery and is non-label-preserving. Sat-SlideMix draws in-
spiration from CutMix, but is label-preserving. Lastly, Sat-
Trivial extends the label-preserving method TrivialAugment
with satellite-specific augmentations. All three methods are
designed for classification and regression tasks, but could be
extended for image segmentation. The proposed methods are
straightforward to implement and do not alter the original
loss functions. Implementation details are in the appendix.

Sat-CutMix
Since Sat-CutMix is an extension to CutMix, we first de-
scribe the CutMix approach.

CutMix generates new images for classification tasks by
patching images together and scaling the class label ac-
cordingly (Yun et al. 2019). Given a training image x ∈
RW×H×C and training label y, CutMix produces a new

training image, label pair (x̃, ỹ) by combining two train-
ing samples within a batch: (xA, yA) and (xB , yB). Let
M ∈ {0, 1}W×H represent a binary mask which indicates
which pixels of an image to keep. 1 is a binary mask of ones,
⊙ denotes element-wise multiplication, and λ is the combi-
nation ratio. CutMix combines the two training samples as:

x̃ = M ⊙ xA + (1 − M)⊙ xB

ỹ = λyA + (1− λ)yB

where λ is sampled from from a beta distribution Beta(α, α).
In essence, a patch from another image in the batch is pasted
onto the base image and the class label is scaled by the pro-
portions of the two image classes (Fig. 1). Sat-CutMix mod-
ifies the original CutMix algorithm in the following three
ways.

First, we extend CutMix to the regression setting. Mixup-
type data augmentation techniques are far less common for
regression than classification, in large part due to challenges
with establishing “meaningful” labels (Hwang and Whang
2021; Yao et al. 2022). Depending on the regression task, it
can be challenging to create new, mixed images that are se-
mantically meaningful. For example, in rotation prediction
tasks, mixing two images of objects having different degrees
of rotation produces an unnatural image. While the issues in
creating meaningful samples likely holds for many computer
vision tasks, satellite images can be mixed with minimal
concern for similarity. To extend CutMix to the regression
setting, we calculate ỹ in the same manner as the classifi-
cation setting but without converting the labels to one-hot
encodings; we scale the image labels by λ and 1 - λ, respec-
tively, and add them. For classification tasks, we leave the
original CutMix label generation procedure unchanged.

Second, we introduce a parameter controlling how many
new samples are created from each instance pair. In the tra-
ditional CutMix algorithm, each image in a batch is mixed
with one other batch image, producing a single (x̃, ỹ) sam-
ple. For sufficiently large datasets, adding variety but not
volume via data augmentation is a sound approach, but given
the prevalence of smaller satellite imagery datasets, it may
be valuable to increase the number of training samples.
Therefore, we introduce γ which defines the number of new
samples to produce for every image in a batch (Fig. 1). With
γ = 3, every image in a batch will be mixed with three other
images to produce (x̃1, ỹ1), (x̃2, ỹ2) & (x̃3, ỹ3) within the
batch.

Third, we make a small modification to the sampling pro-
cedure for the combination ratio λ. In CutMix, λ is sampled
from a beta distribution Beta(α, α). In their experiments,
Yun et al. (2019) samples λ from Beta(1,1), meaning that λ
is sampled from a uniform distribution from (0,1). We swap
the Beta(α, α) distribution for a uniform(α, 1) distribution
to make it easier to control the amount of mixing that is per-
formed. With our formulation, α sets the lower bound for
how much of the base image to keep.

Sat-SlideMix
Taking inspiration from Sat-CutMix, we propose Sat-
SlideMix, which produces slightly more realistic looking



Algorithm 1: Sat-SlideMix
Input: imgs: [batch, C, H, W] tensor
Parameters: γ, β
Output: [γ× batch,C,H,W] tensor

1: magnitudes = sample γ× batch magnitudes from [0.0,
..., β]

2: imgs = imgs.repeat(γ)
3: for (m, img) in (magnitudes, imgs) do
4: dim: randomly select to shift img in H or W dimen-

sion
5: randomly multiply m by -1 {randomly shift in oppo-

site direction}
6: img = torch.roll(img, m, dim)
7: rolled imgs = torch.cat(rolled imgs, img)
8: end for
9: return rolled imgs

images than Sat-CutMix (Fig. 1) and is label-preserving.
Rather than mixing two images, we translate an image by
some number of pixels and paste the portion of the image
pushed outside of the image bounds onto the other side of
the image (Fig. 1). In other words, we roll the image along
its height or width axis. Sat-SlideMix has two parameters:
γ (the number of new samples to create within the batch
for every image in the batch) and β (the maximum percent-
age of the image to shift). See Algorithm 1 for Sat-SlideMix
pseudocode.

Sat-Trivial
We introduce Sat-Trivial as an automated augmentation
technique with satellite-specific augmentations. TrivialAug-
ment was developed as a computationally efficient alterna-
tive to the more costly automated methods of AutoAug-
ment and RandAugment. TrivialAugment has the simplest
scheme for selecting augmentations and yet, somewhat sur-
prisingly, outperforms the other two methods (Müller and
Hutter 2021). Given a set of augmentations, TrivialAugment
samples a single transformation uniformly at random along
with a corresponding magnitude (i.e., distortion strength) for
every image in the batch.

Our method modifies the set of augmentations in Triv-
ialAugment to be satellite-specific. We kept the geometric
augmentations (flip, rotate, translate, and shear) and added
three transformations to model types of variation common
to satellite imagery. Specifically, we added random erasing
to mimic missing data, random saturation to represent over-
saturation, and Gaussian noise to model sensor noise.

Comparative Framework
We evaluated the three proposed augmentation methods
along with several common data augmentation techniques
across three classification and three regression tasks. We se-
lected tasks with datasets derived from a range of different
sensors to evaluate the methods on a variety of satellite data
sources. See Tab. 1 for a summary of the tasks and the ap-
pendix for a detailed description of the tasks.

Data Augmentation Methods
We evaluated four common image augmentation methods;
three automated strategies (AutoAugment, RandAugment,
and TrivialAugment) and a standard natural image augmen-
tation set (MoCo v2’s aug-plus). MoCo v2’s aug-plus (Chen
et al. 2020b) randomly applies the following transforma-
tions to every image: ResizedCrop, color jitter, grayscale,
Gaussian blur, and horizontal and vertical flips. Learning
policies for AutoAugment requires a significant amount of
computational resources (Müller and Hutter 2021), there-
fore, we used the three prelearned policies: ImageNet, CI-
FAR10, and SVHN. RandAugment is a more efficient ex-
tension to AutoAugment with two tunable parameters and
TrivialAugment is a further improvement which is parame-
ter free. The transformations used in the automated methods
are: identity, rotate, shear-x, shear-y, translate-x, translate-
y, autoContrast, brightness, color, contrast, equalize, poster-
ize, sharpness, solarize.

We additionally investigated groupings of the individual
transformations used in the automated methods. We split the
set of transformations into a geometric set and a color set of
transformations. We reduced the set of geometric transfor-
mations down to the two most basic operations of flip and
rotate. To determine if distorting the topology (e.g., shear)
degraded performance, we evaluated a geometric set with-
out shear and a geometric set with a maximum amount of
shear. Following TrivialAugment, we randomly sample one
transformation from the set of possible transformations for
each image in the batch. Similar to the automated methods,
we used a linear scale for determining the magnitude of each
transformation. Again following TrivialAugment, we scale
the magnitudes from {0, ..., 30} and uniformly at random
sample one of the strengths for each (image, transformation)
pair. Below is a summary of the augmentation methods we
compared. We did not include MixChannel in our compari-
son as many satellite imagery datasets (to include those an-
alyzed in our study) do not have multiple images taken over
the same location, a requirement for implementing Mix-
Channel. Our three proposed methods are underlined. See
the appendix for

Flip & Rotate: Random horizontal and vertical flips and
random rotations in increments of 90◦.
Geometric: Flip, rotate, translate, and shear transforma-
tions. Rotations were again confined to increments of 90◦.
We sampled translation magnitudes from a range of 0-
10% of the image width and height and shear magnitudes
between 0-0.3 (the smallest range of shear in the auto-
mated methods).

• No shear: Geometric set without shear.
• Large shear: Geometric set with shear magnitude be-

tween 0-0.99 (the largest range of shear in the auto-
mated methods).

Color: AutoContrast, brightness, color, contrast, equal-
ize, posterize, and solarize transformations.
Auto ImageNet: AutoAugment with ImageNet policy.
Automated method which learns sub-policies that define
which two transformations to apply in sequential order,
the probability of applying the transformations, and the



Dataset Task Classes Dataset size Spatial res. Num. bands

UC Merced Land Use (Yang and Newsam
2010)

Classification 21 2100 0.3 m 3

Brazilian Coffee Scenes (Penatti, Nogueira,
and Dos Santos 2015)

Classification 2 2876 10 m 3

EuroSAT (Helber et al. 2019) Classification 10 27000 10-60 m 13
Forest cover (Rolf et al. 2021) Regression n/a 1000 ∼ 4 m 3
Nighttime light intensity (Rolf et al. 2021) Regression n/a 1000 ∼ 4 m 3
Elevation (Rolf et al. 2021) Regression n/a 1000 ∼ 4 m 3

Table 1: Description of tasks. While the original datasets for the three regression tasks consist of 100k images, we significantly
downsampled the datasets to evaluate performance in the small data regime.

magnitudes of the given operations.
Auto CIFAR: AutoAugment with CIFAR10 policy.
Auto SVHN: AutoAugment with SVHN policy.
Rand: RandAugment. A policy-free automated method
with two tunable parameters: N (number of randomly
selected image transformations to apply to each image)
and M (magnitude of the transformations). We used the
default values of PyTorch’s implementation (N=2 and
M=9).
Trivial: TrivialAugment. A parameter-free automated
method. Randomly selects a transformation and a magni-
tude for each image.
MoCo v2’s aug-plus: ResizedCrop, color jitter,
grayscale, Gaussian blur, and horizontal and vertical
flips. All transformations are applied to each image with
randomly sampled magnitudes.
CutMix: Parameter-free mixing method that combines
two images and scales the label based on the proportions
of the classes present in the mixed image. We included
flip and rotate transformations.
Sat-CutMix: Proposed extension of CutMix. We found
γ = 3 and α = 0.9 to perform best (Fig. A1, A2). Similar
to CutMix, we also included flip and rotate transforma-
tions1.
Sat-SlideMix: Proposed label-preserving extension to
Sat-CutMix. We set γ = 3 and set β = 1 (images can be
shifted along their full H or W dimension). We included
flip and rotate transformations for fair comparisons to
CutMix and Sat-CutMix.
Sat-Trivial: Proposed modification to TrivialAugment
with satellite-specific augmentations. The set of aug-
mentations includes flip, rotate, translate, shear, noise,
random erase, and random saturate.

Model, Tuning, and Evaluation
For each task and augmentation pair, we fine-tuned ResNet-
18 models with pre-trained ImageNet weights. For the Eu-
roSAT task which contained 13 input channels, we repeated

1We did not include additional transformations because aug-
mentations are applied in the dataloader which occurs before the
Sat-CutMix procedure. Mixing two images with different augmen-
tations (e.g., an image with shear and an image with noise) would
lead to obscure combinations.

the ImageNet weights in the first convolutional layer (RG-
BRGB. . . ) and multiplied them by 3/C (C = 13 for the input
channels) as was done by Stewart et al. (2024) to handle
multispectral images. For each task, we performed hyperpa-
rameter tuning on the learning rate, batch size, and weight
decay. We also performed early stopping based on a valida-
tion set. Details about final parameter settings can be found
in the appendix. To quantify variation across training runs
and stochasticity inherent to some of the data augmentation
techniques, we trained each model five times. We character-
ized model performance by evaluating the models on a held-
out test set (i.e., we did not report the highest performance
achieved during training). We measured percent change in
accuracy and mean absolute error (MAE) from a baseline
of no data augmentation for the classification and regression
tasks respectively. Source code and supplementary material
are available at https://github.com/Hutchinson-Lab/Data-
Augmentation-Approaches-for-Satellite-Imagery.

Results
Sat-SlideMix. Overall, Sat-SlideMix was the best per-
forming augmentation method (Tab. 2) and outperformed
all other methods in three out of the six tasks (Fig. 2). Sat-
SlideMix significantly outperformed all other methods in the
elevation task.

Sat-CutMix. Sat-CutMix is the second best performing
augmentation method (Tab. 2) and exhibited the highest per-
formance for forest cover (Fig. 2). For the classification
tasks, Sat-CutMix had performance similar to CutMix for
Brazilian Coffee Scenes and EuroSAT and significantly out-
performed CutMix for UC Merced Land Use (Fig. 2). Cut-
Mix is not defined in the regression setting and, therefore, a
comparison is not possible.

Sat-Trivial. Sat-Trivial was the third best performing aug-
mentation method (Tab. 2) and had the highest performance
for UC Merced Land Use (Fig. 2). Across all tasks, Sat-
Trivial significantly outperformed TrivialAugment, its nat-
ural imagery equivalent.

Automated methods. The automated methods showed
mixed results across the tasks. In general, the automated
techniques degraded model performance for the classifica-
tion tasks, but the results were mixed for the regression



Figure 2: Percent improvement over no augmentation. We compared model performance across different augmentation
methods where the results are shown as percent improvement over no augmentation. Our three proposed methods are in bold.
We characterized stochasticity in model training and in the augmentation methods by training five models per task and augmen-
tation method and evaluating on a held-out test set. The bar plots represent the mean model performance over the five trained
models with error bars showing the standard error. Positive values indicate improved model performance over models with no
augmentation while negative values indicate worsened performance. Statistical significances are reported in Tab. A3. The red x
marks indicate situations in which augmentation methods are undefined: traditional CutMix is not defined for regression tasks
and most augmentation methods are only defined for 3-band images and, therefore, cannot be applied to multi- or hyperspectral
images (e.g., EuroSAT). We evaluated the classification tasks (top row) with accuracy, precision, and recall and the regression
tasks (bottom row) with mean absolute error (MAE), mean squared error (MSE), and R2. We only present accuracy and MAE
as the other metrics showed similar trends (Fig. A5, A6).

tasks. Elevation was the only task in which all forms of aug-
mentation were beneficial.

Geometric. In all cases, except for Brazilian Coffee
Scenes, Geometric outperformed Flip & Rotate (Fig. 2). In
all tasks except for forest cover, removing shear from the ge-
ometric set had either no impact (zero in the error bars) or
a very small negative impact (Fig. 3). Removing shear from
forest cover had a significant negative impact. Increasing the
amount of shear had mixed results. Larger amounts of shear
were detrimental to Brazilian Coffee Scenes, EuroSat, and
nighttime lights, beneficial for elevation, and had no impact
for the other two tasks (Fig. 3).

Color. The color augmentation set was only beneficial for
elevation and had degraded model performance for all other
tasks (Fig. 2). Over the classification tasks, the five other
methods which involve color transformations (all three Au-
toAugment policies, Random, and Trivial) displayed de-
graded performance or had error bars overlapping zero.
However, the results were mixed for the regression tasks.

Any type of augmentation was beneficial for elevation, aug-
mentation was either equivalent to no augmentation or bene-
ficial for nighttime lights, and forest cover had mixed results
(Fig. 2). Since the color augmentation set did not consis-
tently perform well, we did not pursue characterizations of
their individual contributions.

Discussion
Our comparative study supports the idea that augmenta-
tion techniques designed for natural images should not be
applied to satellite imagery without careful consideration.
For a given task or dataset, some natural image augmen-
tation methods are beneficial, but those same methods do
not necessarily perform well on a different task or dataset
(Fig. 2). All three regression tasks are based on the same
imagery dataset, and yet, the automated augmentation meth-
ods exhibit varying performance across the tasks, whereas
our three proposed methods consistently perform well on
the three regression tasks (Fig. 2). Across all tasks, Sat-
SlideMix, Sat-CutMix, and Sat-Trivial’s performances are



Figure 3: Percent improvement over Geometric set. The
bar plots represent mean model performance over five
trained models with the associated standard errors. Positive
values indicate improved model performance over the geo-
metric set while negative values indicate worsened perfor-
mance.

notable since they are the top three performing methods
(Tab. 2). In fact, in all but one task, the best perform-
ing method is either Sat-SlideMix, Sat-CutMix, or Sat-
Trivial (Fig. 2). Furthermore, Sat-Trivial, which has the
same augmentation scheme as TrivialAugment but with
satellite-specific augmentations, significantly outperforms
Trivial-Augment across all tasks. This highlights the benefit
of domain-specific augmentation methods.

Some tasks may benefit from the increased diversity in
the label space created by the non-label-preserving meth-
ods. Across our three proposed methods, our non-label-
preserving method (Sat-CutMix) has the best performance
for Brazilian Coffee Scenes and forest cover, while our
label-preserving methods (Sat-SlideMix and Sat-Trivial)
have the best performance among the remaining four tasks.
The performance differences between Sat-CutMix and Sat-
SlideMix could be due to the non-label-preserving and label-
preserving characteristics of the two methods.

While Illarionova et al. (2021) suggest geometric aug-
mentations, such as rotation and translation, do not provide
enough variability for medium resolution data (10m/pixel)
and, therefore, have somewhat limited influence, our results
show that flip and rotate are better than no augmentation
whatsoever (Fig. 2). Our results indicate that augmentations
beyond geometric transformations can further improve per-
formance (Sat-CutMix, Sat-SlideMix, and Sat-Trivial com-
pared to Geometric, Fig. 2). Additionally, when randomly
sampling from a set of transformations (i.e., images some-
times have translate or shear applied, for example), adding
small amounts of translation and shear generally improves
performance over only flipping and rotating (Geometric ver-
sus Flip & Rotate, Fig. 2). However, care should be taken in
how much shear is applied. Increasing the amount of shear
was detrimental to Brazilian Coffee Scenes, EuroSat, and
nighttime lights, but beneficial for elevation (Fig. 3).

As several studies have suggested (Neumann et al. 2019;
Hao et al. 2023; Lacoste et al. 2024), we found that color

Augmentation
method

Average
rank

Standard
deviation

Sat-SlideMix 2.17 1.60
Sat-CutMix 2.83 1.47
Sat-Trivial 3.17 1.94
CutMix 3.67 3.06
Geometric 3.83 1.17
Flip & Rotate 4.83 1.47
Trivial 6.40 1.52
Random 7.40 0.89
Auto SVHN 8.80 1.92
Color 9.60 0.89
MoCov2’s aug-plus 10.40 2.70
Auto ImgNet 11.00 1.58
Auto CIFAR 11.40 0.89

Table 2: Mean and standard deviation rankings of the
augmentation methods across tasks. Our proposed meth-
ods are in bold.

augmentations were generally not beneficial for satellite im-
agery (Fig. 2). While we cannot determine the root cause
for the mixed (and often negative) impacts of the automated
methods, we know that all automated methods rely on color
transformations. Conversely, the methods which do not in-
volve color augmentations (Flip & rotate, Geometric, Cut-
Mix, Sat-CutMix, Sat-SlideMix, and Sat-TrivialAugment)
almost always exhibited improved performance over no aug-
mentation. However, it should be noted that in cases like
contrastive learning where two different data views are nec-
essary, a significant amount of data augmentation, to in-
clude varying color properties, may be desirable (Chen et al.
2020a; Greenstreet et al. 2023).

Conclusion

While larger datasets are preferred for training deep mod-
els, establishing large, labeled datasets for satellite imagery
analyses is not always feasible (Adedeji et al. 2022). When
transferring machine learning methods to satellite imagery,
the main approach is to transfer techniques developed for
other domains with little work done to tailor the methods to
satellite imagery (Rolf et al. 2024). Others have highlighted
the need to develop satellite-specific methods, especially in
regard to data augmentation (Abdelhack 2020; Lacoste et al.
2024).

We present an analysis of how data augmentation tech-
niques developed for natural imagery transfer to satellite
imagery and propose three satellite-specific methods. We
demonstrate the benefit of our methods by evaluating them
on a variety of tasks. Our results indicate that color-based
augmentations and natural image augmentation techniques
are not directly transferable to satellite imagery, but that
geometric operations are beneficial. Additionally, we show
that our proposed Sat-SlideMix, Sat-CutMix, and Sat-Trivial
methods are the top performing augmentation methods.
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