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Appendix

Implementation Details

Sat-CutMix Similar to the original CutMix algorithm,
Sat-CutMix generates new (x̃, ỹ) samples in an online man-
ner (i.e., during training). The new samples are then used to
train the model. The original (x, y) instances are only used
for generating (x̃, ỹ) pairs and are not used for model train-
ing. Implementing Sat-CutMix is straightforward; this mod-
ule can be called after retrieving a mini-batch and before
feeding the mini-batch to the model.

Sat-Trivial For random erasing, we randomly erase any-
where from {0 ... 9} small pixel groups in the image. We
perform the same procedure for random saturation but rather
than setting the pixels to black to remove the data, we set the
pixels to white to mimic oversaturation. We set the pixels to
black/white across all bands within an image to produce the
highest level of augmentation. We apply a random amount
of Gaussian noise with zero mean and random standard de-
viation sampled from Uniform(0, 0.04). We performed a pa-
rameter sweep over a random set of tasks to determine the
ranges for these augmentation methods (Fig. A3, Fig. A4).

Color & Geometric Whenever we used color or geomet-
ric augmentations, we used the same magnitude ranges as
in the automated methods (as defined by the PyTorch im-
plementation). The only exception was translate which we
set to a maximum of 10% of the image height and width.
In both the color and geometric augmentation sets, we ran-
domly sample one transformation from the set of possible
transformations and apply it with 100% probability, with
the exception of flip and rotate which are applied with 50%
probability. For the transformations which have magnitudes,
we randomly sample a magnitude from the range based on
the linear scale described in the main text. Tab. A1 details
the ranges of each augmentation.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Transformation Magnitude range

identity -
rotate -
flip -
translate 0 - 0.10
shear 0.3 & 0.99
auto contrast -
brightness 0.01 - 1.99
color 0.01 - 1.99
contrast 0.01 - 1.99
equalize -
posterize 2 - 8
sharpness 0.01 - 1.99
solarize 0 - 255

Table A1: List of transformations, associated ranges.

Tasks
Classification Tasks We selected three classification
tasks: UC Merced Land Use (Yang and Newsam 2010),
Brazilian Coffee Scenes (Penatti, Nogueira, and Dos Santos
2015), and EuroSAT (Helber et al. 2019). The UC Merced
Land Use Dataset consists of aerial images from 21 different
land use classes. The classes span categories such as beach,
parking lot, buildings, forest, and overpass. The images were
collected from 20 cities across the United States and were
manually annotated. Each class contains 100 images (Yang
and Newsam 2010).

The Brazilian Coffee Scenes dataset is comprised of
SPOT satellite images collected in 2005 over four counties
in Brazil. Images were labeled by agricultural experts and la-
beled coffee if more than 85% of the pixels contained coffee
and non-coffee if less than 10% of the pixels contained cof-
fee. The dataset consists of 2876 images with an equal split
of coffee and non-coffee (Penatti, Nogueira, and Dos Santos
2015).

EuroSAT is made up of 27,000 Sentinel-2 images span-
ning ten land use and land cover classes collected over 34
countries. The images were visually verified and images
with incorrect or unobservable labels were removed. The
dataset consists of a set of 13-band multispectral images and
a set of 3-band RGB images (Helber et al. 2019). We used
the multispectral images in our analysis.



Regression Tasks We selected three regression tasks from
Rolf et al. (2021) with increasing complexity: percent forest
cover, nighttime light intensity, and elevation. Forest cover
is directly observable from satellite imagery and, therefore,
should be the most straightforward to predict. Nighttime
light intensity itself is not observable from daytime satel-
lite images, however, proxies for nighttime light intensity
(e.g., dense urban areas vs. open land) are observable. Ele-
vation on the other hand, is much more difficult to estimate
solely from a satellite image. Images for all three tasks were
collected across the contiguous United States and were col-
lected based on the sampling schemes of Rolf et al. (2021).

Data preprocessing

To help address spatial autocorrelation, we used the
blockCV R package (Valavi et al. 2019) to split datasets con-
taining geographic location information into spatial blocks
(label preprocessing.R). We then used the spatial blocks to
assign data points to train, test, and validation sets. For the
tasks without location information, we randomly split the
data into train, test, and validation sets.

For EuroSAT, the only multispectral dataset in our anal-
ysis, we converted the 16-bit Sentinel-2 images to 8-bit
images by clipping pixel values to 2750 and then scaling
them to be between 1-255 as recommended by Helber et al.
(2019).

Model Training & Parameter Tuning

For each task, we tuned the learning rate, batch size, and
weight decay. We did not perform an exhaustive search over
the hyperparameters, but we performed enough tuning to
find suitable values for the more sensitive hyperparameters
(learning rate and batch size, in our case) as is recommended
by Lacoste et al. (2024). We evaluated learning rates from
1e-6 to 1e-3, batch sizes from 16 to 128, and weight decay
from 0.001 to 0.1. We fine-tuned the models for a maximum
of 3k epochs and performed early stopping based on the val-
idation set. Tab. A2 details the final hyperparameter values.

The models were trained on a cluster containing a mix of
GPUs. The GPUs utilized for our analysis included Nvidia
Tesla V100s with 32GB VRAM and 1.5 TB RAM, Nvidia
Quadro RTX 8000 with 44 GB VRAM and 768 GB RAM,
Nvidia GeForce GTX 1080 Ti GPUs with 11 GB VRAM
and 256 GB RAM, Nvidia GeForce GTX 980 Ti GPUs with
6 GB VRAM and 128 GB RAM. The cluster has a Cen-
tos Linux 7.9 operating system and CUDA 12.2. Our virtual
environment ran Python 3.8, Torch 2.1.1. and Torchvision
0.16.1. The rest of the package versions can be found in our
requirements.txt file.

For our proposed method which required parameter tun-
ing (Sat-CutMix), we performed a parameter sweep on a
random subset of tasks. We ensured that there was at least
one regression task and one classification task. The random
subset includes forest cover, Brazilian Coffee Scenes and
UC Merced Land Use. We ran five models per task and pa-
rameter value and evaluated the performance on the valida-
tion set.

Task Learning
rate

Batch
size

Weight
decay

Brazilian Coffee
Scenes

1e-5 64 0.1

UC Merced Land Use 1e-6 50 0.01
EuroSAT 1e-6 16 0.01
Elevation 1e-6 100 0.01
Forest cover 1e-5 32 0.01
Nighttime lights 1e-5 64 0.01

Table A2: Hyperparameters for each task.

Figure A1: Parameter sweep of α (the lower bound for how
much of the base image to keep) for Sat-CutMix with γ = 3.
α = 0.9 achieves the best performance across tasks.

Figure A2: Parameter sweep of γ (number of pairs created)
for Sat-CutMix with α = 0.9. γ = 3 achieves the best perfor-
mance across tasks.



Figure A3: Parameter sweep over the maximum number of
pixel groups for the random erase and random saturate aug-
mentations. Setting the maximum number of groups to 9
gives good performance across all tasks.

Figure A4: Parameter sweep over different standard devia-
tions for the Gaussian noise. Setting the standard deviation
to 0.04 gives the best performance across all tasks.

Additional Results



Figure A5: Percent improvement over no augmentation for classification tasks.

Figure A6: Percent improvement over no augmentation for regression tasks.



Task Method No aug. Flip & Rotate

Brazilian Coffee Scenes Sat-CutMix 3.44 1.83
Brazilian Coffee Scenes Sat-SlideMix 2.34 0.73
Brazilian Coffee Scenes Sat-Trivial 1.21 -0.40
EuroSAT Sat-CutMix 3.49 0.96
EuroSAT Sat-SlideMix 3.54 1.02
EuroSAT Sat-Trivial 2.63 0.11
UC Merced Land Use Sat-CutMix 1.58 -0.20
UC Merced Land Use Sat-SlideMix 1.45 -0.33
UC Merced Land Use Sat-Trivial 1.91 0.13
Elevation Sat-CutMix 19.29 11.04
Elevation Sat-SlideMix 29.00 20.74
Elevation Sat-Trivial 20.30 12.04
Forest cover Sat-CutMix 45.43 18.72
Forest cover Sat-SlideMix 43.19 16.49
Forest cover Sat-Trivial 38.38 11.68
Nighttime lights Sat-CutMix 13.55 -0.60
Nighttime lights Sat-SlideMix 19.65 5.49
Nighttime lights Sat-Trivial 18.82 4.66

Table A3: Mean difference in percent improvement over no augmentation between proposed methods and no augmentation and
Flip & Rotate. Tukey-Kramer tests were used to establish statistical significance. Differences found to be statistically significant
(p-value < 0.05) are in bold.
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