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Abstract

Citizen science biodiversity data present great opportunities
for ecology and conservation across vast spatial and tempo-
ral scales. However, the opportunistic nature of these data
lacks the sampling structure required by modeling method-
ologies that address a pervasive challenge in ecological data
collection: imperfect detection, i.e., the likelihood of under-
observing species on field surveys. Occupancy modeling is
an example of an approach that accounts for imperfect de-
tection by explicitly modeling the observation process sepa-
rately from the biological process of habitat selection. This
produces species distribution models that speak to the pattern
of the species on a landscape after accounting for imperfect
detection in the data, rather than the pattern of species ob-
servations corrupted by errors. To achieve this benefit, occu-
pancy models require multiple surveys of a site across which
the site’s status (i.e., occupied or not) is assumed constant.
Since citizen science data are not collected under the re-
quired repeated-visit protocol, observations may be grouped
into sites post hoc. Existing approaches for constructing sites
discard some observations and/or consider only geographic
distance and not environmental similarity. In this study, we
compare ten approaches for site construction in terms of their
impact on downstream species distribution models for 31 bird
species in Oregon, using observations recorded in the eBird
database. We find that occupancy models built on sites con-
structed by spatial clustering algorithms perform better than
existing alternatives.

Code — https://github.com/Hutchinson-Lab/Spatial-
Clustering-for-SDM

Datasets — https://doi.org/10.5281/zenodo.14362178

Introduction

Species distribution models (SDMs) combine species ob-
servations with environmental data to produce estimates
of species patterns across landscapes (Elith and Leathwick
2009). SDMs are important tools for ecological science and
natural resource management. Examples include analysis of
avian population declines (Betts et al. 2022; Rosenberg et al.
2019), assessments of species’ [UCN Red List status (Syfert
et al. 2014), and decision support for species translocation
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programs under climate change (Barlow et al. 2021). These
models and their applications operate at a variety of spatial
scales, from global analyses of species ranges (Cole et al.
2023) to regional assessments that drive local-scale conser-
vation action (Rugg, Jenkins, and Lesmeister 2023). This
paper is particularly motivated by science and conservation
questions at the local-to-regional scale, which often require
inference about fine-scale habitat features and the correc-
tions for observational error that we describe below.

A pervasive challenge in species distribution modeling
stems from the inherent difficulty of observing all organ-
isms present at a given location when completing a survey.
Many species are secretive, camouflaged, and/or ephemeral,
so species are often under-reported. This is known as the
problem of imperfect detection, which is common to both
expert- and volunteer-led surveys. A family of models and
associated sampling schemes has been developed in ecology
to address this issue. A key idea is to collect multiple ob-
servations of a location, or site, during a period when the
species status remains constant; variation in observations
across this period then speaks to the observational process
itself. A foundational member of this family of approaches
is the occupancy model, which links environmental features
(e.g., elevation, land cover) to a binary latent variable repre-
senting the species occupancy at each site. Then the multiple
observations at each site depend both on the true occupancy
status and a set of detection-related features (e.g., time of
day, ambient noise) to correct for imperfect detection. This
framework has been extended beyond static, binary repre-
sentations of occupancy to species dynamics and abundance
(Bailey, MacKenzie, and Nichols 2014).

Citizen science (CS) programs engage volunteers to col-
lect large-scale biodiversity datasets, providing exciting op-
portunities for machine learning where ecology meets ‘big
data’ (Beery et al. 2021; Johnston, Matechou, and Dennis
2023). The eBird project gathers checklists of birds daily
across the globe (Sullivan et al. 2014); a sample of these data
are analyzed below. Other CS Programs include eButterfly,
which collects butterfly observations with a structure similar
to eBird (Prudic et al. 2017), and iNaturalist, which relies on
photo-based observations of biodiversity (iNaturalist).

While citizen science datasets have great potential to in-
form science and policy, a challenge arises when build-



ing SDMs from these data: they are not collected with the
multiple-observation protocol developed for models that ac-
count for imperfect detection. Ignoring the consequences of
imperfect detection can negatively impact SDMs (Guillera-
Arroita et al. 2014; Lahoz-Monfort, Guillera-Arroita, and
Wintle 2014). To leverage the strengths of CS data while
still accounting for imperfect detection, one can form the
multiple-observation structure post hoc from opportunistic
species reports; this is the site clustering problem (Roth
et al. 2021). The sites created to solve this problem might be
thought of as observational units, but ecologically, they may
also have connections to ideas about species’ home ranges
or territory sizes. A variety of approaches for site cluster-
ing exist (Johnston et al. 2021; von Hirschheydt, Stofer,
and Kéry 2023; Hochachka, Ruiz-Gutierrez, and Johnston
2023). Some potential disadvantages of existing approaches
include overly stringent constraints on what may constitute
a site, the need to discard some data points that do not fit
into the site definitions, and the inability to consider environ-
mental features as well as geographic information. Spatial
clustering techniques from machine learning (ML) have the
potential to improve upon existing methods by incorporating
both environmental and geographic similarity measures.

This paper offers an empirical study of ten approaches to
the site clustering problem, drawn from both the ecology and
machine learning literature. We show that occupancy models
are sensitive to the choice of site clustering and that the ML
approaches perform well. Our specific contributions are:

e We provide an empirical analysis with open-source data
and code to compare solutions to the site clustering problem.

e We find evidence in support of approaches that (1) keep
all data points rather than discarding some and (2) incorpo-
rate environmental features.

e We investigate a method for automatically tuning pa-
rameters to reduce the modeling burden for practitioners.

Background

Occupancy Modeling. Motivated by the need to account
for imperfect detection of organisms on surveys, occupancy
models simultaneously represent the species occurrence pat-
tern (and its relationship to environmental features) along
with the species observation pattern (and its relationship to
detection-related features) (MacKenzie et al. 2002; Bailey,
MacKenzie, and Nichols 2014). Occupancy models define a
binary latent variable Z; for each site ¢ = 1, ..., M that rep-
resents whether or not the species occurs there, and this is
linked to occupancy features X; which encode environmen-
tal habitat information in the style of a logistic regression:
p(Z; = 1) = ¢; = o(BTX;), where o() denotes the lo-
gistic function. Fig. 1 shows the graphical view of the latent
variable model. Detection probabilities p;; for repeated ob-
servations t = 1,...,T; of each site are linked similarly to
observation-related features W;; (e.g., time of day, weather,
observer expertise): p;; = O’(’}/TWit). The observations Y;;
link the occupancy and detection components of the model
such that p(Y;; = 1) = Z;p;. The parameters {3, ~} of the
model can be fit by maximum likelihood estimation.
Implicit in these equations are key assumptions of oc-
cupancy models. In particular, each site has a single value
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Figure 1: Graphical representation of occupancy model. La-
tent variable Z; € {0, 1} represents occupancy at site i =
1,..., M and Y;; = {0, 1} represents the observation during
t = 1,..,T;. X; represent site features and W;; represent
survey features.

for its occupancy status that remains constant across re-
peated (imperfect) observations ¢; this is the closure as-
sumption. The closure assumption is of special impor-
tance to the current paper, since our task of interest is to
group opportunistically-collected biodiversity reports into
sites that are suitable for occupancy modeling post hoc. Vio-
lation of the closure assumption can lead to biased estimates
of occupancy probability (Rota et al. 2009). We note that
closure naturally has a temporal dimension as well; we fol-
low common practice of identifying a time period of mini-
mal distributional change for the species of interest (e.g., the
breeding season for birds) and focus on the spatial aspects of
the problem here. In addition to the closure assumption, oc-
cupancy models also assume no false positive observations;
if Z;is 0, p(Yix = 1) is also O regardless of the value of
pit. Extensions to the occupancy modeling framework that
relax the assumption of no false positives exist (Royle and
Link 2006; Miller et al. 2011; Hutchinson, He, and Emerson
2017), but they are beyond the scope of this paper.

Single-Visit Approaches. While occupancy models are
designed for repeated observations to sites, some work has
investigated the idea of applying occupancy models to indi-
vidual observations, which we refer to here as Single Visit
(SV) models. The appeal of the SV approach is that the clo-
sure assumption is satisfied automatically, since there are
no repeated visits to consider. The concern that arises with
the SV approach is parameter identifiability; in the classical
occupancy model, repeated visits are necessary to identify
the occupancy and detection probabilities separately. Lele
et al. (2012) argued that occupancy models could be ap-
plied in the SV setting under certain conditions on the occu-
pancy and detection features that essentially require that the
two feature sets be sufficiently different. Knape et al. (2015)
expressed concern that the assumptions underpinning that
work were unrealistic, and S6lymos et al. (2016) responded
by clarifying the assumptions and reiterating the case for
the potential of SV approaches. More recently, Stoudt et al.
(2023) provided another argument against identifability in
SV approaches based on ideas from econometrics. In our ex-
periments below, we include the SV approach for complete-
ness, but these concerns suggest that practitioners should
take caution with this method.
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Figure 2: Simulated example of site formation using clust-
Geo and DBSC clustering algorithms. eBird observation lo-
cations from southwest Oregon, United States, are shown as
red dots overlaid on satellite imagery from the correspond-
ing region. clustGeo aggregates points iteraritvely and stops
when the desired number of clusters is reached. Newly cre-
ated clusters at each step are shown using bold dashed cir-
cles and ellipses. DBSC constructs a Delaunay Triangula-
tion (shown using orange triangles) and then splits it based
on spatial constraints and feature similarity.

Site Clustering Problem. The concerns about trivially
satisfying the closure assumption with SV approaches and
the known problems with violations of the closure assump-
tion underpin the importance of the site clustering problem,
introduced by Roth et al. (2021). A key difference between
this problem and typical clustering settings is that the qual-
ity of the clustering cannot simply be formulated as a math-
ematical objective. Instead of measuring quality via simi-
larity metrics among points within clusters or dissimilarity
between points across clusters, we are interested in how the
clustering influences performance on downstream tasks like
occupancy modeling. Given a set of observations at geo-
located points, the objective of the site clustering problem is
to construct a set of clusters C which optimize performance
evaluation metrics for a downstream model. For example, in
this paper, we seek a clustering that optimizes the area under
the receiver operating characteristic curve (AUC) for predic-
tions of held-out observations made by occupancy models.

Spatial Clustering Approaches. A variety of clustering
methods for spatial data exist in the machine learning liter-
ature (Ng and Han 1994). Here, we outline two spatial clus-
tering approaches that have potential application to the site
clustering problem.

First, clustGeo is a hierarchical, agglomerative spatial
clustering method (Chavent et al. 2018). It calculates the
distance d between two objects, i1 and io, using a weighted
combination of two Euclidean distance metrics: d(i1,i2) =
adi (i2,12)+ (1 —a)da(i1, i2). Here, di measures geospatial
distance, dz measures environmental distance, and @ € [0, 1]
is a parameter weighting the relative importance of these

two. The algorithm iteratively merges the most similar ob-
jects (top row of subfigures in Fig. 2) and stops when a spec-
ified number of clusters, controlled by the parameter ), is
reached. For instance, A\ = 80 sets the number of clusters
created to approximately 80% of the number of unique loca-
tions.

Second, density based spatial clustering (DBSC) uses a
two-step, divisive clustering approach and is able to discover
clusters of arbitrary shapes and sizes (Liu et al. 2012). The
first step imposes spatial constraints on the clustering pro-
cess. A Delaunay Triangulation (DT) graph of the points
is constructed (bottom row of subfigures in Fig. 2). A DT
graph consists of triangles where the minimum angle be-
tween points is maximized. Long edges, which have lengths
exceeding a threshold based on the average length of edges
in the DT graph, are removed to form spatially disjoint DT
subgraphs. These subgraphs are split again in a similar man-
ner, but this time the long edges are defined based on the
localized characteristics of edges in the DT subgraphs. The
final partitions are used to construct the clustering. Points
in the same partitions are candidates for being in the same
cluster. The second step clusters the points in the partitions
based on their feature similarity while enforcing the spatial
constraints from the first step.

Bayesian Optimization. The primary objective of
Bayesian Optimization routines is to optimize black-box
functions (Snoek, Larochelle, and Adams 2012; Garnett
2023). We introduce this technique for tuning parameters
of the clustering algorithm (for clustGeo in particular), to
avoid requiring users to add another step to their modeling
workflow. The optimization routine has two main compo-
nents. The first component, the acquisition function, has the
task of acquiring potential solutions over which fitness is to
be evaluated. The second component, the fitness function,
decides how fit the potential solutions are to optimizing our
objective. The routine iterates between using the acquisition
function to find the next potential solution to evaluate
and the fitness function to gauge the effectiveness of the
potential solution.

Candidate Clustering Approaches

In this study, we implemented and compared ten methods to
address the site clustering problem. Similarities and differ-
ences among the methods are summarized in Table 1.

1. SVS: Single Visit Sites. Trivially, every data point is
treated as a site with a single observation (i.e., a cluster
of size 1). When points have identical coordinates, they
are still treated as different sites.

2. 1/UL: One per Unique Location. Every unique location is
treated as a site. If there are multiple points with identical
coordinates, one is chosen randomly to keep and the rest
are discarded.

3. lat-long: Latitude-longitude. Points with the same
latitude-longitude coordinates are assigned to the same
site. Sites can have any number of observations (i.e., clus-
ter size can range from 1 to any number of co-located
points).
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Table 1: Properties of the ten candidate approaches to the site-clustering problem.

4. 2to10: Approach with cluster size in 2-10. Constructs
sites based on analytical guidelines for eBird data (John-
ston et al. 2021). Points with identical coordinates form
sites, but the number of observations per site is con-
strained to be within [2, 10]. Singletons and observations
beyond the limit of 10 are discarded.

5. 2to10-sameObs: Approach with cluster size in 2-10 and
all records from the same observer. This is the same ap-
proach as 2to10 with the added requirement of having all
points being recorded by the same observer.

6. rounded-4: Lat-long rounded to 4 decimal places. Points
with the same coordinates after rounding latitude and
longitude to the fourth decimal place are assigned to the
same site.

7. 1-kmSgq: 1 square kilometer grid. This method overlays
a grid with one square kilometer cells on the study area,
and points falling within grid cells are assigned to the
same site.

8. best-clustGeo: clustGeo with the best tuning parameters
selected post hoc. Sites are clustered by the clustGeo
algorithm. We set parameters using all possible combi-
nations of parameters « = {0.25,0.5,0.75} and A =
{60, 70,80,90}. The final parameters reported for this
method are the values that produced the best results at
test time; this method essentially uses an oracle to deter-
mine the best that the clustGeo approach could perform.

9. BayesOptClustGeo: clustGeo with Bayesian optimiza-
tion of parameter tuning. Sites are clustered by clust-
Geo algorithm, and the parameters « and A are tuned via
Bayesian optimization, requiring no manual input from
the user nor additional cross-validation.

10. DBSC: Density-Based Spatial Clustering. Sites are built
from clusters defined by the DBSC algorithm. Unlike
clustGeo, this method has no externally tunable param-
eters.

Experimental Design

Data Selection and Pre-processing

Our study comprises data from the eBird basic dataset in
a region of southwestern Oregon, USA collected in 2017
and 2018 during May 15th - July 9th of each year. This
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Figure 3: Observation locations from eBird checklists in
2017 and 2018 recorded over southwest Oregon, United
States, are shown as red dots. Of these, there were 2,497
checklists at 1,314 unique locations in 2017, and 3,490
checklists at 1,519 unique locations in 2018.

window corresponds to the breeding season of many bird
species, which is a common focus of ecological analyses
and a common choice of temporal window for meeting
the occupancy modeling closure assumption. We obtained
all complete checklists from the region, resulting in 2,497
checklists in 2017 and 3,490 in 2018 (Fig. 3). We linked
the checklist data reporting detections vs. non-detections
for each species to two sets of features. For modeling oc-
cupancy probabilities, we used five habitat features: eleva-
tion derived from a Digital Elevation Model (DEM), and
Tasseled Cap Brightness, Tasseled Cap Greenness, Tasseled
Cap Wetness, and Tasseled Cap Angle derived from Land-
sat data (Baig et al. 2014). For modeling detection proba-
bilities, we used five detection features provided with the
eBird dataset: day_of_year, time_observations_started, dura-
tion_minutes, effort_distance_km, and number_observers.

We selected 31 species for analysis to represent a range of
prevalences, degrees of conspicuousness, home range sizes,
and habitat and diet breadths. Species were categorized as
primarily inhabiting forested or non-forested habitats, such
as grasslands and early seral habitats. They were further



classified as specialists or generalists based on habitat and
diet diversity, with specialists occupying fewer habitat types
and having a narrower diet (e.g., insectivores), and general-
ists occupying various habitats and consuming a wider range
of foods (e.g., omnivores). Information on habitat special-
ization, diet, and home range sizes was sourced from pub-
lished species life history reviews (Billerman et al. 2020).
Species were grouped into three categories based on home
range size (small, less than 2.5 ha; medium, 2.5 to 39 ha;
large, 40 ha and greater) and three prevalence levels (low,
less than 2.84%; medium, 2.84% to 13.12%; high, 14.42%
and higher). Details on species names, taxonomic abbrevia-
tions, prevalence, and traits are provided in Table S1.

We followed the recommendations of Johnston et al.
(2021) for eBird data filtering, pre-processing, and occu-
pancy modeling. Specifically, we excluded checklists where
the distance traveled exceeded 0.25 km and those from
eBird “hotspots” to ensure location accuracy, as bird watch-
ers might report the hotspot location rather than the precise
nearby location.

Model Fitting

The only clustering approach with parameter tuning was
BayesOptClustGeo, where parameters « and \ were selected
via Bayesian optimization. We used the upper confidence
bound (UCB) as the acquisition function and defined a cus-
tom fitness function for our problem. Specifically, we mea-
sured the Silhouette width averaged over all points used for
constructing the clusterings and used that as unsupervised
feedback for the Bayesian optimization routine. Silhouette
width measures how similar points are to the clusters they
are assigned to with respect to other clusters (Rousseeuw
1987); a higher value indicates a clustering where points
are similar to the clusters they are in and dissimilar to the
other clusters. We defined the similarity measure using a
uniformly weighted Euclidean distance computed from the
geospatial features (latitude and longitude) and environmen-
tal habitat features. We used the average Silhouette width of
the clusterings formed by clustGeo based on the specified
parameter combination as our fitness function. We ran 30
iterations of parameter acquisition followed by fitness eval-
uation, using real values in the ranges o = [0.01,0.99] and
A = [10,90]. This allowed for a more granular search over
clustering parameter combinations compared to manually
experimenting over a uniform grid of parameter values.

We fit occupancy models to the site structures produced
by each clustering algorithm on the training data. Model pa-
rameters were fit via maximum likelihood estimation with
the unmarked package (Fiske et al. 2015) in R version
4.4.2. Since test splits vary across repeats, we trained once
and repeated the testing process 25 times per species, fol-
lowing Johnston et al. (2021).

Model Assessment

We used a temporally independent test set to measure the
performance of occupancy models fit with different site
structures. We trained all models on the 2017 checklists and
used the 2018 checklists for testing. To form the testing

dataset, we again followed the recommendations of John-
ston et al. (2021). First, we split the 2018 checklists into
detections and non-detections. Then we placed an equal
area hexagonal grid with centers separated by distance of
5 km over our study region using the dggridR R package
(Barnes and Sahr 2017), and spatially subsampled by keep-
ing no more than two checklists from each hexagon (up to
one detection and one non-detection). Trained models were
evaluated 25 times on the spatially subsampled test set.

We compared the outputs of occupancy models fitted with
different checklist clusterings based on their ability to pre-
dict held-out observations of detection vs. non-detection.
We multiplied the occupancy and detection probabilities to-
gether to estimate observation probability, which we com-
pared with the species observations from the test set to mea-
sure performance. We measured the area under the receiver
operating characteristic curve (AUC) for each set of predic-
tions. The results were summarized by calculating percent-
age AUC improvement over lat-long. For each species and
for each test split, algorithm a has percentage AUC improve-
ment, §, = ((AUCa _AUClat—long)/AUClat—long) x 100.
We did a parallel assessment with area under the precision-
recall curve (AUPRC), which can be an appropriate metric
especially for more rare species.

We also analyzed the relationship between species traits
and performance of the clustering algorithms by building
linear mixed-effects models (Kuznetsova, Brockhoff, and
Christensen 2017). These models treat species as a random
effect and treat the interactions between species traits and
clustering algorithms as the fixed effects. The non-intercept
coefficients of these linear mixed effect models inform us of
how general combinations of algorithms and species traits
(interaction groups) affect model performance in terms of
percentage AUC improvement, while factoring in species
specific variance of performance. We built four such models
to study the relationships between algorithm and percentage
AUC improvement based on (i) prevalence level, (ii) home
range size, (iii) habitat type, and (iv) whether the species is a
generalist or a specialist. We built a fifth mixed effect model
on the relationship between algorithm choice and percent-
age AUC improvement in general. This analysis aims to un-
derstand whether different clustering approaches might be
preferred for different types of species.

Finally, we assessed the effects of the different cluster-
ing approaches qualitatively by examining predictive maps
of occupancy probability across the region. We note that the
metrics described above focus on predictive performance of
the occupancy models, i.e., their ability to predict held-out
observations of the species. However, while this is the met-
ric available from the existing data, it is not the output of
scientific interest from the model. The model of the latent
occupancy process speaks to the actual biological process
of interest, but the quality of this model is hard to evaluate
because it is only observed through the lens of imperfect de-
tection. Given the scientific importance of this aspect of the
modeling, we constructed maps of the occupancy patterns
predicted for each species from each clustering approach for
visual inspection and qualitative evaluation.
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Figure 4: Boxplots show the percentage AUC improvement
of each method over lat-long. Larger positive values indi-
cate better performance than lat-long; negative values indi-
cate worse performance than lat-long.

Results and Discussion

Predictive Performance. When measuring the perfor-
mance of the clustering algorithms with AUC on held-out
observations, the highest-performing approach varies across
species, but some general trends point to the promise of
the spatial clustering approaches. Fig. 4 presents perfor-
mance of the site clustering approaches relative to the per-
formance of lat-long. As expected, best-clustGeo has the
highest overall mean and lowest variance since it is tuned
to each species based on test performance; it is not directly
comparable to the other methods and represents an upper
limit on how well clustGeo might perform with optimal
tuning. BayesOptClustGeo has the next highest mean per-
formance, with substantial variation. Comparison between
best-clustGeo and BayesClustGeo reveals the performance
gap that results (at least partially) from the parameter tun-
ing process, both in terms of the slightly lower mean perfor-
mance and the higher variance. This suggests that further
work on the parameter tuning procedure, ideally without
requiring extra effort from modelers, may be fruitful. The
other spatial clustering method, DBSC, also performs well,
though slightly behind the clustGeo approaches. In contrast
to best-clustGeo and BayesOptClustGeo, DBSC does not re-
quire prior knowledge about the number of sites to gener-
ate or how to weight distance metrics. The relatively good
performance, combined with this ease of use, gives DBSC
a potential advantage over clustGeo and BayesOptClust-

Geo since DBSC does not require parameter tuning, which
may be challenging to incorporate into the modeling work-
flow. We see similar trends when we measure the percentage
AUPRC improvement over lat-long (Fig. S6, S7).

The site clustering approaches that produce sites with sin-
gle observations, SVS and 1/UL, show mixed results. In
terms of this AUC-based metric, the SVS approach is a
close competitor to the top performing clustering algorithm
BayesOptClustGeo. However, as discussed above, literature
suggests that this approach incurs substantial risk of non-
identifability of parameters. These identifability problems
may compromise scientific insight into the model without
being detectable when performance is measured solely with
predictive metrics. Recall that the 1/UL method is a special
case of SVS that discards all but one data point at each loca-
tion; its lower performance is likely attributable to smaller
data set sizes. Despite the potential concerns surrounding
these trivial solutions to the site clustering problem, we have
included them for completeness.

The lat-long, rounded-4, and 1-kmSq methods make use
of all data points and rely solely on geographic informa-
tion to form sites. These approaches perform similarly to
each other and form the ‘middle of the pack’ across the set
of clustering algorithms. That these methods trail the spa-
tial clustering algorithms suggests that there is benefit to be
gained from considering environmental space as well as ge-
ographic space.

The site clustering approaches based on the eBird recom-
mendations have negative values in Fig. 4, indicating weaker
performance than lat-long. The requirements for defining
sites in these methods may imply discarding too much data
for the consequent models to remain competitive. 1/UL is
the only other method that discards data, and these three
methods rank last in predictive performance. Overall, our re-
sults indicate that methods which make use of all available
observation data outperform methods which do not.

Recent work has similarly noted the utility of ‘mixed’ oc-
cupancy designs, meaning site structures that include some
SV sites and some sites with multiple visits (or observations;
MYV). In particular, instead of discarding all SV sites and
only keeping MV sites, including SV sites can increase the
precision of occupancy estimates (von Hirschheydt, Stofer,
and Kéry 2023; Hochachka, Ruiz-Gutierrez, and Johnston
2023). In our comparison, lat-long, 1-kmSq, rounded-4,
DBSC, best-clustGeo, and BayesOptClustGeo all allow the
creation of such mixed occupancy designs.

While most of the candidate clustering approaches here
produce the same site clusterings for all species, analysis
of best-clustGeo (the ‘oracle’ method), which does provide
species-specific clusterings, suggests directions for further
improvements. In this study, the training data points have
the same geospatial coordinates and environmental habitat
features for all 31 species. However, the species observa-
tions vary across those points, producing problem instances
with different prevalence rates, or class balances. The only
method that uses information about the species observations
is best-clustGeo, where the parameter settings are chosen
based on test set performance; best-clustGeo is the only
method with species-specific clustering. This provides clues
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Figure 5: Occupancy probability of Northern Flicker (Colaptes auratus) over southwestern Oregon, United States predicted by
species distribution models built from sites produced by ten clustering algorithms.

into potential directions for future work. We found that A
had a bigger influence than « and that the performance of
clustGeo parameterizations on different species was not uni-
form; i.e., the optimal parameter values varied across species
(Fig. S1, S2; Table S2). Thus, a potential direction for fu-
ture work is to fold species-specific information into the
Bayesian optimization routine.

Effects of Species Traits. The mixed-effects models pro-
vided preliminary insights into the interactions between
species traits and site clustering approaches, with additional
support for spatial clustering methods. Detailed results are
in the supplemental material (Fig. S9); here, we summa-
rize general trends. Clustering algorithms performed bet-
ter on species that had low prevalence rates, large home
range sizes, lived in forested habitats, and were specialists.
best-clustGeo and BayesOptClustGeo are parts of interac-
tion groups with the highest effects on percentage AUC im-
provement over lat-long. 2to10 and 2to10-sameQObs are fre-
quently parts of interactions groups which negatively impact
AUC. The ordering of algorithms in Fig. 4 is mirrored by
the coefficients of the mixed effect model linking algorithm
choice and raw AUC (Fig. S8).

Qualitative Results. While the results above judge per-
formance based on predictions of held-out observations, re-
call that the scientific interest in occupancy models centers
instead on estimates of the latent variable, which are chal-
lenging to evaluate. We can at least visualize differences in
the estimates provided by occupancy models when supplied

with data shaped by the different site clustering approaches.
Fig. 5 provides an example of the variation across methods
for Northern Flicker (Colaptes auratus). While further ex-
pert analysis is required to gauge reliability of these maps, it
is worth noting the variability in overall magnitude and spa-
tial distribution of occupancy probability across clustering
approaches. For most study species, the clustering approach
had visually apparent effects on the occupancy estimates that
inform science and policy in ecology and conservation.

Conclusion

This study explored the role of clustering of opportunistic
biodiversity observations as a precursor to species distribu-
tion modeling. We evaluated ten approaches to this task and
provided insight for future directions. Both the predictive
and qualitative results show that models are sensitive to the
design choices made at the clustering stage of the analytic
workflow. Corroborating other work in the ecology litera-
ture, we find that clustering approaches which exclude some
data points are outperformed by those that do not. Spatial
clustering algorithms from the machine learning literature
can incorporate environmental feature space as well as geo-
graphic space, and they show promising results in our com-
parative evaluation. Future work on this topic should focus
on species-specific selection of clustering parameters while
minimizing additional burden to modeling practitioners.
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