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A B S T R A C T

Species distribution models (SDMs) link species occurrence to environmental characteristics to predict suitable 
habitats beyond known occurrences. The conventional procedure to fit SDMs for individual organisms detected 
at some distance away from observers is to characterize species’ associated habitat based on observer’s survey 
location. However, each surveyed individual may be detected in habitats distinct from those where observers are 
located. Here, we compared environmental variables centered on the observer and individual bird locations and 
the consequent effects on SDMs performance. We utilized remote sensing data on observer- and bird-locations to 
characterize habitat at three radii (pixel radius: 30-m; fixed radius: 100-m; species-specific effective detection 
radius). We trained Poisson boosted regression tree models for 105 bird species from structured professional 
surveys. We evaluated models’ predictability with Kendall’s rank correlation coefficient and used linear mixed- 
effect models to measure the effect of characterization locations and radii. Models based on bird locations 
exhibited a median increase of 22.9% in predictive performance, demonstrating higher Kendall’s rank correla
tion coefficients than those based on observer locations, leading to more reliable prediction maps. SDMs of 
habitat specialists and generalists performed better when habitat characterization was centered on bird instead of 
surveyor locations. A higher percentage of habitat specialists (72%) than generalists (55%) showed better model 
performance in bird-location than in observer-location models. Across radii, fixed radius generally performed 
better than species-specific effective and pixel radii. Our findings emphasize the importance of prioritizing 
habitat characterizations based on detected individuals’ locations to enhance model performance and improve 
species distribution predictions.

1. Introduction

The distributions, population sizes and functioning of biodiversity 
have been influenced by anthropogenic factors from local to global 
scales (Matuoka et al., 2020; Betts et al., 2022; Williams and Newbold, 
2020; Gaston et al., 2003). Establishing reliable measurements of species 
distributions is essential to conservation and management to mitigate 
such changes (Whytock et al., 2018; Olea and Mateo-Tomás, 2011; 
Gábor et al., 2024; Robinson et al., 2021). Species distribution models 
(SDMs) are commonly used to interpolate or predict species occurrence, 
and sometimes abundance, information by analyzing environmental 
(habitat and climate) data associated with species detections and non- 

detections (Elith et al., 2008; Barbet-Massin and Jetz, 2014; Adde 
et al., 2023).

Sample size, sampling bias, and species’ specialization (i.e., gener
alists, specialists) are common factors known to influence the perfor
mance of SDMs (Hallman and Robinson, 2020; Moudrý et al., 2024). 
However, positional error is rarely addressed: in most wildlife surveys, 
individuals are not detected at observers’ exact location (Moudrý et al., 
2024; Zhang et al., 2018). Multiple factors contribute to positional error, 
including recording techniques, spatial resolution, and the characteris
tics of the species being surveyed (Moudrý et al., 2024). Most data 
supplied to SDMs utilize habitat data centered on where a survey was 
conducted (i.e., observer-location) (Hallman and Robinson, 2020; 
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Shirley et al., 2013; Betts et al., 2014). Despite some studies showing a 
positive or little impact of small positional errors on fitting SDMs (Smith 
et al., 2023; Fernandez et al., 2009), several studies have shown a 
negative impact of positional error on SDMs performance (Gábor et al., 
2023; Gábor et al., 2022; Gábor et al., 2020; Osborne and Leitão, 2009). 
Birds, for example, are typically detected at some distance from an 
observer and may, therefore, be in habitats different from those imme
diately around the surveyor. This is particularly true in surveys of het
erogeneous landscapes where observations are gathered along roads 
passing through patchy arrangements of habitats (Moudrý et al., 2024). 
Thus, characterizing environmental predictors around observer loca
tions to construct SDMs can induce mismatches between habitats used 
by birds and those directly around the observer (Guisan and Thuiller, 
2005). Possible mismatching of observer’s habitat with bird’s habitat 
will produce incorrect model output and can reduce model performance 
(Osborne and Leitão, 2009), perhaps more so for habitat specialists than 
generalists (Gábor et al., 2020). The importance of improving model 
performance could be large because many structured avian surveys have 
been conducted along major roadways, such as the North American 
Breeding Bird Survey (Ziolkowski et al., 2022), and provide the foun
dation for regional and continental estimates of population sizes 
(Edwards et al., 2023). Few studies have quantified this issue of loca
tional mismatch despite widespread use of point count protocols where 
observers estimate distance and direction of birds from the observer 
located at a survey point.

In addition to researching the influences of positional error when 
fitting SDMs, characterizing habitat elements and utilizing relevant 
spatial scales to predict species distributions are key steps in fitting 
SDMs (Hallman and Robinson, 2020; Moraga et al., 2019). Environ
mental predictors can originate from various spatial scales, typically 
encompassing larger scales for climatic predictors and smaller scales for 
habitat configuration. Many studies have employed a combination of 
large and small scales of environmental predictors to fit SDMs (Goetz 
et al., 2014; Burns et al., 2020; Jan et al., 2025). Ideally, the resolution of 
environmental predictor variables should be at scales most influential to 
species’ presence or abundance. Moudrý et al. (2023) reviewed the 
literature on selecting different spatial resolutions for predictor and 
response variables. Multiple studies indicate that model performance 
declines with the coarsening spatial scale of predictor variables. 
Regarding spatial scale selection, species usually respond to environ
ment differently at various spatial scales, and it is common to find that 
no single scale applies best to all species (Connor et al., 2018; Mitchell 
et al., 2001). Suitable spatial radii may be large (typically < 2000 m) for 
mobile species and those with large home ranges such as birds. The 
optimal radius to infer bird-habitat relationships may vary among bird 
species. Gábor et al. (2024) tested four spatial grain sizes (1 km2 to 2500 
km2) on 57 water-associated bird species and found that 1 km2 grain size 
yielded the best model performance. Hallman and Robinson (2020)
compared single-scale and multi-scale approaches from 165 m to 1215 
m radii and found that multi-scale performed significantly better than 
single-scale in 25 bird species.

Estimating precise coordinates of birds from observers is a chal
lenging enterprise, largely because many birds are heard and not 
necessarily seen. Weather, habitat structure, time of day, characteristics 
of vocalizations and even distance itself affect detectability of birds 
(Edwards et al., 2023; Amundson et al., 2014; Farnsworth et al., 2002; 
Shen et al., 2023; Marsh and Sinclair, 1989; Anderson et al., 2015; 
Diefenbach et al., 2003). Generally, birds are less detectable as distance 
from an observer increases (Buckland et al., 2007; Reynolds et al., 
1980). Taking advantage of this ubiquitous pattern of change in 
detectability as a function of distance, we can estimate density and other 
related factors such as absolute abundance or population sizes 
(Farnsworth et al., 2002; Buckland et al., 2007). The standard approach 
for such analyses is to generate a detection function g(r), which char
acterizes the sigmoidal relationship in numbers of individuals (typically 
dozens to hundreds of observations) detected as a function of estimated 

or measured distance from the observer (Buckland et al., 2015). From 
analysis of the detection function, the effective radius (μ) can be 
calculated, which is the distance at which the estimated number of 
missed individuals beyond that distance equals the number of detected 
individuals less than that distance (Anderson et al., 2015; Buckland 
et al., 2015). The effective radius is species-specific and affected by 
measured distance between observers and birds. Effective radii have 
been recently applied to data from autonomous recording units (ARUs), 
for example, to aid in estimation of density (Pankratz et al., 2017; Pérez- 
Granados and Traba, 2021). Consequently, species-specific effective 
radii used in modeling species distributions may better inform charac
terization of the habitats and other environmental predictors that spe
cies occupy.

We calculated species-specific effective radii for breeding bird spe
cies in Oregon, U.S.A., from more than 10,000 surveys with direction 
and distance data. Positional error is most likely to be relevant when the 
resolution of predictors is significantly affected by it. Thus, we compared 
the predictive performance of SDMs built with habitat variables 
centered on estimated location of each bird to those centered on 
observer locations. For each set of habitat variables, we analyzed three 
radii: (1) pixel size – 30 m spatial resolution of Landsat; (2) fixed radius – 
100 m, a commonly used radius in bird surveys; and (3) species-specific 
effective radius, which recognizes that effective detection of each bird 
varies as a function of species-specific traits such as loudness of vocali
zations or conspicuousness of behaviors. We also measured the effects of 
positional error and three radii sizes on SDMs performance. We antici
pate that positional error will be most influential at the smallest scale 
and less so at the 100-m radius scale. Finally, we tested whether habitat 
specialist species obtain better SDMs predictions than habitat generalist 
species when characterizing habitat variables on bird instead of sur
veyor locations.

2. Methods

2.1. Study area

Our study area was the state of Oregon, U.S.A. Oregon possesses an 
area of 255,026 km2, and has high habitat diversity and climatic vari
ation. For example, it includes 12 Köppen climate types and 9 ecoregions 
(Hopkins et al., 2022). Temperature variability has ranged from − 48 to 
+ 50 ◦C in the past 150 years. Habitats include deserts to rain forests, 
influenced by annual rainfall varying from 0.1 to 5 m/year across its 
geography. Elevations extend from sea level at the Pacific Ocean to 
3427 m at its highest peak (Mt. Hood). In general, major habitat types 
include sagebrush shrubland, forests, grasslands, agriculture, and sub
urban and urban land (Robinson et al., 2020).

2.2. Bird data

Throughout this study, we used two datasets derived from the Ore
gon 2020 project, both were gathered by the same group of trained 
observers. The first dataset included the direction and distance to each 
bird. The second dataset was derived from the first, but with the distance 
information removed. Since the second dataset was gathered in the same 
way data submitted to the public archive – eBird, we refer to these 
stationary counts following the eBird stationary count protocol as 
“eBird-Oregon 2020.” Only the first dataset of Oregon 2020 data con
tained distance measurements of distance between the observer and 
each bird, so we applied distance sampling algorithms to estimate 
species-specific effective radii for 198 breeding bird species and used the 
distance data along with direction from an observer to estimate the 
coordinates of each bird’s location. When comparing SDMs’ perfor
mance for bird- vs. observer-location, we included the first dataset of 
Oregon 2020 (distance information included) for bird-location model 
training. In contrast, eBird-Oregon 2020 (lacking distance information) 
was used for observer-location model training. Utilizing these two 
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subsets of data in this way, we avoided issues of radii around bird- and 
observer-locations overlapping so much that detection of habitat dif
ferences was impeded. For further SDM performance testing, we clas
sified species into habitat specialists versus generalists based on 
breeding evidence during surveys and species natural history informa
tion from Oregon (Marshall et al., 2003). We used bird occurrence re
cords from the Oregon 2020 project (Robinson et al., 2020), and selected 
198 breeding bird species (Table S1) with sufficient numbers of de
tections for further modelling procedures. Oregon breeding bird species 
were defined as species that breed in the region, including year-round 
residents, and migratory species that breed in Oregon during spring 
and summer (Marshall et al., 2003). Oregon 2020 sampling points were 
distributed across Oregon in a stratified random manner (Fig. 1). A total 
of 10,844 bird surveys were conducted from 15 May to 10 July 
2011–2019, with earlier counts conducted in sites of lower elevation, 
and later counts conducted at higher elevation sites. Surveys were 
conducted from dawn to noon by trained observers (Farmer et al., 2012). 
During each survey, the observer first used Garmin eTrex 10 to record 
their location (±15m) and recorded all birds seen and heard during 5- 
min stationary counts in a radius of unlimited distance. The distance 
of all individuals from the observer were measured with a range finder 
to the nearest 10 m when the birds were seen. We also measured dis
tance to the tree or other structure a bird was considered to be present in 
(±10m) even when we could not see the bird, a standard practice in 
avian point counting. Direction was indicated as one of 16 different 
possibilities (e.g., north, north-northeast, northeast, east-northeast, 
etc.). Using distance from an observer and the direction of the bird, 
we deployed Geopy, a Python library used to perform Vincenty’s 
Formulae (Vincenty, 1975), treating Earth as an ellipsoidal geometry to 
estimate coordinates (i.e., latitude and longitude) where each bird 
occurred. Thus, Oregon 2020 data allowed us to build species-specific 
distribution models based on both observer locations and estimated 
bird locations. To fit SDMs with detection vs. non-detection data re
cords, we filled in non-detected species with zero counts (i.e., zero- 
filled) in each survey based on 198 bird species included in this study.

2.3. Environmental data

Recent studies have implemented Landsat spectral bands in fitting 
SDMs and predicting bird distributions (Shirley et al., 2013; Hopkins 
et al., 2022; Jefferys et al., 2024). To characterize habitats, we retrieved 
six Landsat 7 Surface Reflectance Collection spectral bands – Bands 1–5 
& 7 (Table 1), from May 1 to July 31, 2011–2019. Cloud cover may 
impact the spectral bands collection in remote sensing (Zurell et al., 
2020). To reduce the impact of clouds on reflectance values, we 

performed a cloud masking technique from “QA_PIXEL” band to remove 
cloud coverage. Since bird surveys occurred from May into July, we 
composited all Landsat imagery from May to July to generate a median 
value for each annual image composite across Oregon (Jefferys et al., 
2024). We measured habitat characteristics as close to the date of each 
observation as possible (Araújo et al., 2019; Crego et al., 2022). For 
example, an observation made in 2012 was matched with the Landsat 
annual composite from 2012. All environmental analysis was performed 
in Google Earth Engine (https://earthengine.google.com/), a cloud- 
based application programming interface for geographic information 
system analysis, which has recently been applied to predict species 
distributions (Crego et al., 2022).

Each observation from the Oregon 2020 data was referenced to two 
habitat characterizations (observer-location & bird-location). For each 
location type, we also summarized habitat by calculating the median of 
each Landsat band at three radii: a) using exact coordinates to retrieve 
six Landsat bands at a buffer of 30-m pixel radii; b) creating a fixed 
buffer of 100-m around each location; and c) applying a species-specific 
effective radius buffer around each coordinate (Fig. 2).

Fig. 1. Distribution of survey sites from Oregon 2020 (10,844 sites) in the state 
of Oregon, USA. Oregon 2020 data was used for bird-location SDMs training; 
whereas eBird-Oregon 2020 (subset of Oregon 2020 lacking distance informa
tion) was used for observer-location SDMs training.

Table 1 
Landsat 7 Enhanced Thematic Mapper Plus (ETM +) spectral bands description 
and ecological inferences (Landsat 7 Data Users Handbook; What are the best 
Landsat spectral bands for use in my research).

Band Name 
(abv.)

Scale 
(m)

Description 
(wavelength)

Ecological Inferences

Blue Band 
(SR_B1)

30-m Blue light surface 
reflectance 
(0.45–0.52 μm)

Differentiating rock types 
from vegetation and 
distinguishing deciduous 
from coniferous vegetation. 
This band also helps identify 
areas of shallow water, where 
living plants reflect deeper 
blue-violet hues.

Green Band 
(SR_B2)

30-m Green light surface 
reflectance 
(0.52–0.60 μm)

Assessing vegetation health, 
this band is sensitive to 
chlorophyll gain or loss. 
Higher reflectivity of the 
Green Band indicates 
chlorophyll loss, because 
leaves absorb less energy. The 
SR_B4/SR_B2 ratio is used to 
detect senescing vegetation.

Red Band 
(SR_B3)

30-m Red light surface 
reflectance 
(0.63–0.69 μm)

Discriminating vegetation 
types. This band helps to 
assess the content of 
chlorophyll of vegetation. 
Higher chlorophyll in 
vegetation absorbs energy, 
thus the reflectance of Red 
Band is low. The SR_B4/ 
SR_B3 ratio is used to detect 
growing vegetation.

Near-infrared 
Band 
(SR_B4)

30-m Near-infrared surface 
reflectance 
(0.77–0.90 μm)

Emphasis on biomass content. 
High SR_B4 reflectance 
indicates healthy vegetation, 
because water in leaves 
reflects light.

Shortwave 
Infrared 1 
(SR_B5)

30-m Shortwave infrared 1 
surface reflectance 
(1.55–1.75 μm)

Distinguishing rocks and soils 
from vegetation and soil, 
measuring moisture content. 
The SR_B4/SR_B5 is used to 
detect soil content.

Shortwave 
Infrared 2 
(SR_B7)

30-m Shortwave infrared 2 
surface reflectance 
(2.08–2.35 μm)

In addition to detecting 
moisture content of soil and 
vegetation, it measures rocks 
and mineral formation altered 
by hydrothermal processes.
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2.4. Statistical analysis

2.4.1. Effective radius
To assess the effect of distance on perceptibility, we employed dis

tance analysis through the Distance package in R, building species- 
specific detection functions via distance information obtained from 
the Oregon 2020 project. Previous study of the relationships between 
using default half-normal versus species-specific key functions to fit 
detection curves has shown that using species-specific key functions 
yields better model fits (Clements et al., 2025). Therefore, to assess fit of 
each model, we employed three key functions fitting the distance data – 
a) hazard-rate; b) uniform; and c) half-normal with adjustments terms (i. 
e., Cosine, Hermite, and simple polynomial) for each bird species. We 
selected the most parsimonious model via Akaike’s Information Crite
rion (AIC) and estimated average perceptibility of each species. Based on 
the best-selected model, we calculated effective radius for each species 
as follows: 

μ = ω ×
̅̅̅̅̅
Pa

√
(1) 

where ω is truncation distance (m), and Pa is estimated perceptibility of 
species a. To avoid heterogeneity of detection probability that may 
affect fitting detection functions, we set truncation distance at 10 % less 
than the largest detected distance of a species, as suggested by (Buckland 
et al., 2015; Edwards et al., 2023).

2.4.2. Species distribution model
Six boosted regression tree (BRT) models were built for each species, 

associated with habitat characterization strategies on observer-location 
and bird-location (Fig. 2). To assess the association between bird 
abundance and Landsat spectral bands, we built Poisson BRT models for 
each species using the dismo package in R. The modelling process is as 
follows. All detection and non-detection observations of each species 
were split so that 80 % of the data was used for training and 20 % for 
evaluating the models. Thus, species’ individual counts were treated as 
response variables and data from the six Landsat spectral bands were 
treated as explanatory variables. One geographic region, Benton and 

Polk Counties, had especially dense sampling. To reduce the effects of 
oversampling in that region, for each observation we used the “spatio
temp_weight” from the dynamicSDM R package and set the radius within 
which we adjusted relative sampling effort to 104200 m, which was the 
longest distance between the center of that region and its most outlying 
sampling site.

At the scale of the entire state, we used “spatiotemp_block” from 
dynamicSDM R package to spatially split the training dataset with a 1◦ ×

1◦ block of Oregon based on the correlation of all Landsat spectral bands 
(Valavi et al., 2019; Bagchi et al., 2013). Each block was assigned a fold 
number from 1 of 10 to set up 10-fold cross-validation. The spatial block 
approach allows the training dataset to be spatially separated from the 
testing dataset (American Robin example shown in Fig. S1). Each spatial 
block possessed approximately equal sample size of survey points. A 
total of 5000 iterations were performed before assigning each observa
tion to a final spatial block. We left out each block in turn as a test 
dataset and fitted BRT models to the remaining nine blocks of training 
data. For tuning parameters in all BRT models, we held a constant 
learning rate of 0.001, a tree complexity of 5, and an optimal number of 
trees automated from “gbm.step”.

To calculate model performance on the evaluation datasets for each 
habitat characterization strategy of all bird species (i.e., predicted vs. 
observed values), we used Kendall’s rank correlation coefficient 
(Hallman and Robinson, 2020). To better understand the differences in 
model performance between bird- and observer-location SDMs, we 
calculated the percentage difference for each species (Hallman and 
Robinson, 2020). The percentage difference was calculated by sub
tracting observer-location from bird-location evaluation metrics, and 
dividing by the evaluation metric of the observer-location model for 
each species. By focusing on the percentage difference relative to the 
observer-location model’s evaluation metric, this approach reduces 
species-specific effects and facilitates a more standardized comparison 
across species for our three habitat characterization radii. Finally, we 
used linear mixed-effects models to evaluate the effects of character
ization locations (i.e., bird-location models vs. observer-location 
models) and radius of environmental predictors on performance as 
evaluated by Kendall’s rank correlation. We included an interaction 

Fig. 2. Schematic of data processing to compare different habitat characterization approaches on fitting species distribution models. Numbers in each image’s top- 
left corner indicate the data processing order.
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effect between characterization locations and radii to allow the model to 
determine more flexible effects and included species as a random effect. 
We excluded the results of SDMs that did not successfully complete the 
training process (i.e., failed model fitting). To visualize the predicted 
results from different habitat characterization strategies, we chose 
observer-location pixel, fixed radii (commonly used methods in SDMs), 
and bird-location fixed-radius BRT models of five species from habitat 
generalists and specialists, respectively, to predict on the 2019 Landsat 
spectral bands composite.

3. Results

We successfully fitted detection functions for all 198 breeding bird 
species. For fitting SDMs, a total of 105 of the original 198 bird species 
were successfully trained with observer- and bird-location models, 
whereas 93 species failed to fit SDMs in either observer- or bird-location 
models, likely due to insufficient numbers of observations (Table S1). 
Thus, we omitted species that failed to fit SDMs in subsequent analyses. 
We summarized results into three folds as follows: (1) effective radius, 
(2) SDMs of all species, and (3) SDMs of habitat generalists and 
specialists.

3.1. Effective radius

The median detected distance of individual birds across all our dis
tance data was 80 m (Fig. S2). The most frequently selected key function 
of detection function via AIC was hazard-rate (54 species), followed by 
uniform (43 species) and half-normal (8 species). For species-specific 
effective radius, Long-billed Curlew (Numenius americanus) had the 
highest at 339 m (95 % CI = 271–407 m), followed by Pileated Wood
pecker (Dryocopus pileatus) at 316 m (95 % CI = 269–362 m), and 
Common Nighthawk (Chordeiles minor) at 308 m (95 % CI = 254–363). 
In contrast, the three lowest effective radius species are Cliff Swallow 
(Petrochelidon pyrrhonota) at 26 m (95 % CI = 19–33 m), followed by 
Red-breasted Sapsucker (Sphyrapicus ruber) at 24 m (95 % CI = 13–35 
m), and Mallard (Anas platyrhynchos) at 19 m (95 % CI = 3–36 m) 
(Fig. S3).

3.2. Species distribution models

3.2.1. All species
Bird-location models performed better than observer-location 

models (coefficient estimate = 0.05; 95 % CI = 0.04–0.06) (Figs. 3 & 
4). Across all radii, the percentage difference in Kendall’s rank corre
lation coefficient showed that bird-location models increased by a me
dian of 22.9 % compared to observer-location models (Fig. S4a). 
Kendall’s rank correlation coefficient across all bird-location models 
ranged from 0.04 to 0.64 (median = 0.28) and 0.03–0.62 (median =
0.23) for all observer-location models (Fig. S5a & Table S2). Bird- 
location fixed-radius models showed the largest model percentage 
improvement in Kendall’s rank correlation coefficient (median = 26.0 
%) and outperformed observer-location models (Fig. 3 & S4a).

For bird-location models, SDMs that applied a fixed radius (100 m) to 
characterize predictors generally outperformed those using species- 
specific effective and pixel radii (30 m) to characterize predictors 
(Fig. 3b). Pixel radius models showed the lowest predictive performance 
(Fig. 3). For observer-location models, fixed radius models generally had 
comparable predictive performance with effective radius models, 
although fixed radius models performed slightly better; pixel radius 
models had an overall lower predictive performance (Fig. 3).

3.2.2. Comparing habitat specialists and generalists
From the 105 species from which we successfully trained models, we 

classified birds into 73 habitat generalists and 32 specialists (Table S1). 
Using bird locations to characterize habitat predictors generally pro
duced better model performance than observer locations for both 
habitat generalists and specialists (Fig. 4 & S6). The results in Kendall’s 
rank correlation coefficient suggested a higher bird-location predictive 
performance in habitat specialists than in generalists (Fig. 4 & S5). 
Moreover, higher percentage of specialists showed model improvement 
when switched from observer-location to bird-location models than 
generalists (see detail below).

For habitat specialists, Kendall’s rank correlation coefficient had a 
median of 0.3 across bird-location and a median of 0.25 across observer- 
location models (Fig. S5). The results of linear mixed-effect models 

Fig. 3. Influence of habitat characterization locations and radii on Kendall’s rank correlation coefficient from linear mixed-effect models. Panel (a) shows coefficient 
estimates of bird-location models on observer-location models from fixed and interaction effects. The effect of a variable on Kendall’s is regarded as significant when 
the 95% CI did not overlap zero (vertical dashed line). Panel (b) shows the predicted effects of habitat characterization locations and radii on Kendall’s rank 
correlation coefficient.
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showed that bird-location models outperformed observer-location 
models in 23/32 (72 %) of the specialists (Fig. S7). Habitat specialists 
using a fixed radius (100 m) to characterize habitat on bird-location 
produced the largest model percentage improvement compared to 
observer-location models (median = 36.7 %) (Fig. S4c). Across three 
radii, pixel radius models showed a negative effect on Kendall’s rank 
correlation coefficient (Fig. S6a) and led to an overall lower model 
performance and percentage improvement (Fig. S4c & S5c). Utilizing 
different habitat characterization methods yielded different predicted 
relative abundance and evaluation metric values across specialists 
(Fig. 5). Overall, bird-location models demonstrated better model per
formance, indicating that the predicted values more closely align with 
the observed abundance of a species. Despite these differences in pre
dicted relative abundance, most specialists exhibited similar predicted 
distribution patterns throughout the state across three habitat charac
terization strategies. However, the predicted maps for the Wrentit 
(Chamaea fasciata) displayed the greatest contrast between observer- 
and bird-location models in the western region (Fig. 5).

For habitat generalists, Kendall’s rank correlation coefficient had a 
median of 0.26 across bird-location and a median of 0.21 for observer- 
location models (Fig. S5b). The results of linear mixed-effect model 
showed that bird-location models outperformed observer-location 
models in 40/73 (55 %) of the generalists (Fig. S8). For bird-location 
models, SDMs that applied fixed radius to characterize predictors pro
duced the largest model percentage improvement compared to observer- 
location models (median = 24.11 %) (Fig. S4b). Similar to specialists, 

pixel radius models showed a negative effect on Kendall’s rank corre
lation coefficient (Fig. S6) and led to an overall lower model perfor
mance and percentage improvement (Fig. S4b & S5b). The prediction 
maps for generalists produced similar conclusions as specialists, where 
bird-location models showed better performance than observer-location 
models (Fig. 6).

4. Discussion

To compare model performance when predictors were centered on 
observer location versus location of surveyed individuals, in our case 
birds, we measured Kendall’s rank correlation coefficient among boos
ted regression tree (BRT) models for 105 breeding bird species, 
including 73 habitat generalists and 32 habitat specialists. We charac
terized habitat via three radii – a) species-specific effective radius; b) 
fixed radius: 100 m; and c) pixel radius: 30 m, by matching species 
abundance with yearly Landsat imagery composites. Our findings in 
Kendall’s rank correlation coefficients suggest that characterizing 
habitat based on locations of surveyed individuals leads to more accu
rate model outputs. A higher model accuracy indicates a more reliable 
distribution and abundance prediction, a useful outcome for conserva
tion practitioners. These results are consistent with those of Gábor et al. 
(2023) who investigated the impact of positional error with virtual 
species and a real species – Band-tailed Pigeon (Patagioenas fasciata); 
their findings showed model performance generally decreased as posi
tional error increased yet stated that models derived from positionally 

Fig. 4. Kendall’s rank correlation coefficient of bird-location distribution models as a function of the observer-location distribution models based on species 
specialization and radii (1:1 plot). The columns are radii size for habitat characterization. Effective radius is a species-specific distance value; fixed radius is 100 m; 
and pixel radius is 30 m. The rows are species specialization categories – all species (n = 105), habitat generalists (n = 73), and habitat specialists (n = 32). Each 
point indicates a species. Red dashed line denotes the identity line where Kendall’s values are equal from both bird- and observer-location models. Blue solid line with 
gray-shadowed 95 % CI represents the estimated slope of Kendall’s values between bird- and observer-location models. Points that fall above the identity line indicate 
a higher model performance in bird-location than observer-location models. In contrast, points that fall below the identity line indicate a lower model performance in 
bird-location than observer-location models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.)
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inaccurate data can still be ecologically interpretable. However, small 
errors can affect interpretation when propagated across large regions, 
such as in our maps of predicted relative abundances across the state of 
Oregon. Furthermore, data for habitat specialists, where niche breadth is 
much narrower than for generalists, may be more sensitive to positional 
error because habitat differences between observer- and bird-locations 
may be more likely to differ. In our study, we used Landsat imagery 
with a fine 30 m spatial resolution to characterize habitats. As 

mentioned in Moudrý et al. (2024), when spatial resolution of envi
ronmental layers is finer than positional uncertainty, SDMs can result in 
misleading species-environmental relationships. Thus, our results 
further support the idea that consideration of positional errors is 
important to reduce chances of creating misleading species distribution 
prediction maps. In addition, our results showed that habitat specialists 
had a higher model performance when using bird-location models than 
did generalists. These results align with Gábor et al. (2020) who 

Fig. 5. Predicted relative abundance of five habitat specialists’ Poisson BRT models from three habitat characterization strategies in the state of Oregon, USA. 
Trained models were predicted in the 2019 Landsat raw spectral bands composite. Kendall’s rank correlation coefficient is presented on top of each panel. Higher 
Kendall’s values indicate better model performance. The observer-location models refer to habitat characterization performed on observer’s location; the bird- 
location models refer to habitat characterization performed on each bird’s estimated location from the distance and direction data obtained during point counts. 
Fixed radius is a 100 m buffer around location, while pixel radius is 30 m around location. The unit for predicted relative abundance is on a 30 × 30 m pixel scale. 
Note: predictions extend across Oregon, even outside each species’ known ranges, simply to illustrate the relative differences in the model predictions.
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evaluated the effect of introducing positional error in both generalists 
and specialists; their results showed specialists were more negatively 
affected by positional error than generalists.

The median detected distance of individual birds across all our dis
tance data was 80 m (Fig. S2). Even when employing a relatively large 
fixed radius of 100 m for our comparisons of observer- versus bird- 
location habitats, our models showed better performance when 
centered on bird locations. That is, for the fixed-radius method, the 

radius was large enough, on average, that there should have been a 
greater degree of overlap when habitats were characterized around each 
location. Yet, the fixed-radius of 100 m centered on bird-locations out
performed the observer-location fixed-radius models, indicating the 
Landsat reflectance value from the non-overlapping areas from an ob
server’s locations did differ from that of the bird locations sufficiently to 
affect results. In many avian surveys, observers typically conduct point 
count surveys on or near roads. In areas with heterogeneous habitat 

Fig. 6. Predicted relative abundance of five habitat generalists’ Poisson BRT models from three habitat characterization strategies in the state of Oregon, USA. 
Trained models were predicted in the 2019 Landsat raw spectral bands composite. Kendall’s rank correlation coefficient is presented on top of each panel. Higher 
Kendall’s values indicate better model performance. The observer-location models refer to habitat characterization performed on observer’s location; the bird- 
location models refer to habitat characterization performed on each bird’s estimated location from the distance and direction data obtained during point counts. 
Fixed radius is a 100 m buffer around location, while pixel radius is 30 m around location. The unit for predicted relative abundance is on a 30 × 30 m pixel scale. 
Note: predictions extend across Oregon, even outside each species’ known ranges, simply to illustrate the relative differences in the model predictions.
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cover, birds may often be detected in habitat that differs from observer’s 
location. Therefore, characterizing habitat based on bird-locations can 
enhance the model’s capability to delineate habitat differences from 
observer-location, further improving model predictability and accuracy. 
Conversely, in scenarios where the surveyed area consists of less het
erogeneous habitat, there might be minimal differences in Landsat 
reflectance values between observer- and bird-locations, resulting in 
very similar model performances. Our results from comparisons of 
generalist species’ maps suggests this is the case.

Although our goal was to evaluate model performance between bird- 
and observer-locations, we also compared the effects of different radii 
sizes on model accuracy. Generally, fixed-radius models performed 
better than pixel-radius (30 m) and species-specific effective radius 
models. Since we only tested three different radii, and species respond 
differently across gradient sizes of scales (Moudrý et al., 2023; Connor 
et al., 2018), we may not provide comprehensive recommendations on 
the most reliable radius for characterizing habitat. Here, we briefly 
speculate on possibilities as to why pixel-radius and effective-radius 
performed less well than fixed-radius models. For pixel-radius models, 
precise locations are rarely known because most birds are heard, not 
seen. Potential errors in the distance and directional estimates may 
introduce noise in the characterization of environmental predictors. For 
example, birds are less detectable as the distance from the observer in
creases (Edwards et al., 2023; Anderson et al., 2015), and this includes 
uncertainty of location (i.e., positional error) (Moudrý et al., 2024). In 
addition to positional errors resulting from distance estimates, several 
factors have been identified to impact position estimates. These include 
biases in global navigation satellite systems, mismatched coordinate 
reference systems, and rounding of coordinates (Moudrý et al., 2024). 
With a fine 30-m spatial resolution to summarize predictors, mis
matching the bird’s exact location from a pixel-based raster may result 
in higher model stochasticity, contributing to lower model performance, 
since adjacent pixels may have different Landsat reflectance values. For 
effective radius models, the larger the effective sampling radius, the 
more overlap exists in comparisons of observer- and bird-location hab
itats. Therefore, for many species effectively detected at large distances, 
shifting analyses to bird locations and characterizing habitats based on 
effective radii should have minimal benefits to model performance. 
These results are consistent with that of Gábor et al. (2022) who found 
that coarsening spatial resolution did not fully compensate for the effects 
of positional errors. Regarding effective radius estimates, we estimated 
species-specific effective radii from a substantial dataset of distance 
values collected in Oregon. As with all surveys of birds, distance esti
mation errors are always present (and the magnitudes of those errors are 
typically unknown). We recommend that careful evaluation of species- 
specific effective radii is necessary before use of those radii as buffers 
to characterize habitats because of occasionally unusual effects of spe
cies detectability on effective detection radii.

Many studies have effectively utilized fine-scale (30 m) remotely 
sensed data combined with larger radii (>100 m) sampled at survey 
locations to analyze how species respond to complex landscapes (Gábor 
et al., 2024; Moraga et al., 2019). Despite these larger radii encom
passing most habitats that species may occupy, we argue that using such 
extensive distances (300–2000 m) to summarize habitat characteristics 
will naturally include habitats that birds do not actually occupy, 
particularly in more heterogeneous matrix landscapes. Connor et al. 
(2018) conducted an investigation using seven different grain sizes in 
SDMs for two virtual species and discovered that the area under the 
receiver operating characteristic curve (AUC) values generally 
decreased as grain size increased. Cohen and Jetz (2025) fitted SDMs for 
572 bird species across five spatial grains from 1 to 50 km and found that 
1 km spatial grain yielded more model accuracy. In contrast, coarsening 
spatial resolution, however, does not always substantially impact model 
performance (Pradervand et al., 2014; Guisan et al., 2007). A similar 
concept used in SDMs – the species-centered approach, often employs a 
large radius (2 km) to characterize habitat and has been effectively used 

to quantify the influence of suitable habitat on bird occupancy (Betts 
et al., 2014). Nevertheless, applying the species-centered approach to 
predict potential distributions in a new landscape presents challenges if 
species’ relevant habitats are not specifically characterized. Our study 
supports the concept that habitat characterization centered more exactly 
on a detected individual’s instead of a surveyor’s location assists in 
capturing the species-habitat relationships and will permit better pre
diction of distributions across landscapes with similar habitats present. 
It is common among bird survey protocols, in particular, to gather dis
tance and direction information so the application of mapping bird lo
cations first then collecting habitat data should improve bird SDMs if our 
results hold in other regions. Given the high habitat diversity of our 
study region, Oregon, and the large number of species we studied (n =
105), it is likely our results are generalizable at least to other North 
American landscapes.

In the case of habitat specialist and generalist comparisons, a higher 
percentage of specialists showed better model percentage improvement 
in bird-location models than generalists. This result is consistent with 
other studies (Connor et al., 2018; Goedecke et al., 2020; Morelli et al., 
2024). Habitat specialists tend to occupy specific, restricted environ
ments with narrower niche breadths, which allows modeling algorithms 
to more easily delineate differences across diverse landscapes, thereby 
enhancing the accuracy of the models. This has been validated through 
both empirical studies (Morelli et al., 2024; Barnagaud et al., 2012) and 
virtual species simulations (Pérez-Granados and Traba, 2021). Our re
sults further suggest that the occurrences of habitat specialists are 
strongly correlated with the environmental predictors surrounding each 
bird’s estimated location. It is important to note that specialists with 
large home ranges, such as the American Goshawk (Astur atricapillus), 
may benefit less from shifting habitat characterization from observer to 
bird locations, because an individual may occupy a large area. As a 
result, using a relatively smaller area, such as a 100-m radius, to char
acterize surrounding predictors may be less effective for these large 
home range species. Consequently, the arguments presented in this 
study are more applicable to species with smaller home ranges. In 
contrast, habitat generalists typically occupy a broad range of habitat 
gradients (i.e., heterogeneous mosaics), making it more challenging for 
modeling algorithms to accurately capture the species’ associated hab
itats (Grenouillet et al., 2011).

Our incorporation of relative abundance into models was intended, 
in part, to illustrate the consequences of small differences in model 
performance by predicting abundances across the large state of Oregon, 
even to areas where the birds are not known to breed. This approach 
applies what is learned about habitats where birds occur and where they 
were not detected, then ignores details of biogeographic distributional 
limits to illustrate in a heuristic manner the consequences of model 
choices. Our approach revealed some interesting differences in pre
dicted distributions and abundances. On average, the predicted relative 
abundances of habitat specialists were qualitatively similar across our 
modeling approaches. An exception was Wrentit (Chamaea fasciata), 
where we found obvious discrepancies between predictions derived 
from bird-location models and those from observer-location models. The 
observer-location models predicted high relative abundance in metro
politan areas, such as Portland, Oregon, while the bird-location fixed- 
radius models indicated relatively lower abundance. Wrentits are known 
to inhabit coastal and interior shrub habitats, but are rarely found in 
urban settings. As a result, observer-location based model predictions 
may mislead stakeholders in map interpretation, thereby limiting our 
ability to inform effective conservation planning. Habitat specialists are 
often of the greatest conservation concern, requiring more focused ef
forts for habitat and population restoration (Chazdon et al., 2011). 
Therefore, our findings highlight that more accurate model predictions 
can be achieved through bird-location models that accommodate posi
tional error for habitat specialists.

Predicting species’ distributions in future habitat or climate sce
narios are current foci of ecological research and conservationists are 
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interested in applying results to management decisions. Nevertheless, 
caution is warranted because SDMs have limitations when interpolating 
or extrapolating beyond locations where species occur, as the modeling 
procedure is based on habitat characterizations that have limits 
regarding the specificity with which they can currently identify habitat 
components. For example, our prediction maps of Hermit Warbler 
(Setophaga occidentalis) reveal model insensitivity to different assem
blages of tree species forming the coniferous habitats Hermit Warblers 
choose for breeding. We incorporated raw Landsat spectral bands that 
depend solely on surface reflectance (numerical data) rather than land 
cover type (categorical data) when fitting our SDMs. The raw spectral 
bands yield reflectance values ranging from 0 to 255 for each designated 
band (Landsat 7 Data Users Handbook). Tree species sharing similar 
reflectance values across these bands, or those tree species clustered as 
mixed forests within 30-m pixel, may be less distinguishable using 
Landsat raw spectral bands. We speculate that the reflectance values 
obtained from dominant coniferous trees in the western Cascades – 
Douglas-fir (Pseudotsuga menziesii) may closely resemble those of eastern 
Cascades coniferous species – Ponderosa Pine (Pinus ponderosa), 
Lodgepole Pine (Pinus contorta), and Western White Pine (Pinus mon
ticola) (see Fig. S9 for all six Landsat spectral bands). Hermit Warblers 
inhabiting coniferous forests in the western Cascades are in areas where 
the Landsat-derived reflectance values yield similar results for conif
erous forests in the eastern Cascades, leading to predictions of relatively 
high abundance in eastern Oregon. Further research is needed to 
investigate the effectiveness of using raw spectral bands from Landsat to 
accurately characterize different assemblages of tree species for SDMs. 
Despite the advantages of fitting models on detected individuals instead 
of observer locations, these models were unable to fully capture the 
realized niches of the species. Although we utilized the complete range 
of Landsat spectral bands (i.e., blue, green, and red) to characterize 
habitat, relying solely on these spectral bands may not adequately 
differentiate landscape composition, including variations in tree species. 
In 2030, the anticipated launch of Landsat Next is expected to provide 
finer spatial resolutions (10–20 m) and temporal scales (6-day interval), 
along with the addition of 15 new spectral bands (Next, 2023). By 
integrating land cover type with these advancements, scientists should 
be better at assessing species-habitat relationships at more refined 
spatial and temporal scales.

Our analyses included a diverse set of avian species (n = 105), with 
each species distribution model being trained using six BRT models that 
responded to various environmental gradients through remote sensing 
imagery across Oregon. We also compared the performance of these 
models based on contrasting our categorization of species as habitat 
generalists versus specialists. However, our study does not encompass 
the full natural distribution of species (e.g., North America), nor does it 
incorporate the full range of climatic or landcover type predictors. Thus, 
we limit our conclusion to the spatial extent, predictors, and species we 
studied. Our findings demonstrated that the implementation of bird- 
location fixed-radius models yielded higher accuracy in model pre
dictions. In Europe, the “Ornitho” database (e.g., https://www.ornitho. 
ch) enables observers to submit checklists that include the exact loca
tions of birds. This is a valuable resource as it can assist in bird-location 
SDMs fitting, especially for habitat specialists. We encourage current 
avian population monitoring programs to incorporate features that 
enable observers to submit checklists along with the location of birds. 
Accounting for positional error in birds can be challenging, particularly 
for rare or inconspicuous species with low detectability. Autonomous 
recording units (ARUs) have improved the detectability of birds, 
enabling scientists to estimate density of population more accurately. 
Recent studies indicate that in some circumstances ARUs are effective 
tools for determining bird locations (Mennill et al., 2006; Manzano- 
Rubio et al., 2022; Frommolt and Tauchert, 2014).

5. Conclusion

This study highlighted differences in SDMs’ performance when 
characterizing habitat using locations of surveyed individuals compared 
with observers’ locations. Our research on birds demonstrates that 
characterizing habitat around bird locations with a 100 m radius 
generally enhanced model accuracy, particularly for habitat specialists, 
compared to characterizing habitats around observer locations. The 
predictions generated by bird-location models provide a more reliable 
estimate of relative abundance and distribution but must also incorpo
rate biogeographical range information to limit predictions to the 
known ranges of birds prior to use by conservationists or managers. Our 
findings emphasize the importance of prioritizing habitat characteriza
tion that focuses directly on surveyed individuals’ locations instead of 
on observer locations. Thus, if direction and distance are available in a 
dataset, we encourage researchers to prioritize characterizing predictors 
on location of surveyed individuals. Despite this study mainly focusing 
on birds, we speculate that our approach can apply to other taxa as well. 
By implementing these more accurate modeling strategies, we can 
enhance our understanding of species distribution and abundance.
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Gábor, L., et al., 2022. Positional errors in species distribution modelling are not 
overcome by the coarser grains of analysis. Methods Ecol. Evol. 13, 2289–2302.
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