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1 Introduction

This document includes explanations and descriptions of our model training algorithm, generation of the
synthetic data, parameter tuning process, and setup of our real-data experiments. In particular, the avian
point count datasets of 5 bird species, including the full descriptions of the site and survey features, are
detailed in this document. Additional simulation results and real-data experiments on four more bird species
can also be found in this document. Sec. 7 also presents discussions on the real-data experiments and insights
revealed by the outputs of the algorithms from an ecological study viewpoint.

2 Subgradient Algorithm

Recall that the maximum likelihood estimation problem is as follows:

logL =

M∑
i=1

logLi =

M∑
i=1

log

(
oi

Ti∏
t=1

[
dyit

it (1− dit)1−yit
]

+ (1− oi)κi

)
(1)

where κi is a constant defined as κi = 1

(∑Ti

t=1 yit = 0
)

. The regularized version of our cost function is

given by

− 1

M

M∑
i=1

logLi + λF ‖U1‖2,1 + λG, ‖V1‖2,1 (2)

where the `2/`1 mixed norm for Z ∈ Rm×n is expressed as follows:

‖Z‖2,1 =

n∑
j=1

‖Z(:, j)‖2.

As we mentioned, the mixed norm is often used in the literature for feature selection. To put together, our
optimization criteria can be summarized as

min
θG,θF

− 1

M

M∑
i=1

L̃i(θG,θF ) + λFφ(θF ) + λGφ(θG), (3)

where

L̃i(θG,θF ) = logLi, φ(θF ) = ‖U1‖2,1, φ(θG) = ‖V1‖2,1.

The maximum likelihood estimation problem is unconstrained, and thus a simple subgradient descent al-
gorithm can be naturally employed. Since the three terms in (2) are all non-differentiable (as the neural
networks in our construction use the rectified linear unit (ReLU) activation functions), subgradient should
be used in optimization, instead of gradient.

In iteration k, the update rule is as follows:

θ(k+1) ← θ(k) − α(k)
(
−∂L̃(θ(k)) + ∂φ(θ(k))

)
where θ = [θ>G ,θ

>
F ]>, φ(θ) = λFφ(θF ) + λGφ(θG) and the subgradient ∂L̃ =

∑M
i=1 ∂L̃i is computed via the

chain rule and backpropagation.
To reduce complexity, ∂L̃ can be approximated by sample averaging:

∂L̃(θ(k)) ≈ 1

|B(k)|
∑

i∈B(k)

∂L̃i(θ
(k)),

where B(k) is a randomly sampled batch of sites such that B(k) ⊆ [M ].
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3 Data Simulation Details

We simulated data to evaluate the models’ ability to predict probabilities and observations as well as discover
important features. Our data generation formula is a mixture of linear and nonlinear components. The
equations below show how we generate synthetic data for each site i and survey t. In this simulation setting,
we define 10 features for both sites and surveys, and only the first five features are used to generate the
responses. That is, there are five irrelevant features in each sub-model.

xi ∼ N (0, σ2I), (4a)

wit ∼ N (0, σ2I), (4b)

[α]k ∼ U(−1, 1) if k = 1, . . . , 5, [α]k = 0, ∀k > 5, (4c)

[β]j ∼ U(−1, 1) if j = 1, . . . , 5, [β]j = 0, ∀j > 5, (4d)

oi =
exp((1− ρ) ·αTxi + ρ · xT

i Axi)

1 + exp((1− ρ) ·αTxi + ρ · xT
i Axi)

, (4e)

dit =
exp((1− ρ) · βTwit + ρ ·wT

itBwit)

1 + exp((1− ρ) · βTwit + ρ ·wT
itBwit)

, (4f)

Here, α is a coefficient vector on site features (xi) and β is a coefficient vector on survey features (wit),
A and B are diagonal matrices of α and β, respectively. The value of ρ = [0, 1] indicates the contribution
of linear and nonlinear terms in generating synthetic data. When ρ = 0, the latent generative models for
oi and dit are linear models, while ρ = 1 corresponds to nonlinear models. We sample covariates from the
normal distribution to ensure that we have well-balanced probabilities. We sampled the coefficients from the
uniform distribution to avoid unbounded values.

We generated training, validation, and test sets from the same formula. We generate different types of
datasets with the size of sites (M) and visits (T ) and ρ value. We use M ∈ {100, 1000} and T ∈ {3, 10} for
training and validation sets and fix the site size for test sets with M = 1000 and the corresponding value of
T . We also generate datasets using ρ ∈ {0, 1}. In total, we have 8 different types of datasets as described in
Table 1.

idx nSites nVisits ρ

1 100 3 0
2 100 3 1
3 100 10 0
4 100 10 1
5 1000 3 0
6 1000 3 1
7 1000 10 0
8 1000 10 1

Table 1: Synthetic datasets

4 Avian Point Count Dataset Details

We also analyzed data on bird distributions to evaluate the proposed method on a real dataset. We used
10,845 5-minute point count bird surveys from the Oregon 2020 database (Robinson et al., 2020). Surveys
were conducted during the bird breeding season (May 15-July 10) by trained field ornithologists from 2011 to
2019. The survey locations were selected according to a stratified random design to distribute observations
across Oregon. Within this design, 3-8 surveys were clustered within one randomly selected 1-square-mile
section of each of Oregon’s 36-square-mile township. During each survey, all birds were counted and identified
to species.
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We selected five common Oregon species for this analysis. Common Yellowthroat (Geothlypis trichas),
Eurasian Collared-Dove (Streptopelia decaocto), Song Sparrow (Melospiza melodia), Western Meadowlark
(Sturnella neglecta), and Pacific Wren (Troglodytes pacificus), vocalize frequently during the breeding season
and have conspicuous, easily identifiable vocalizations. These species have very different habitat preferences.
Common Yellowthroat is found in extremely wet vegetation with little canopy cover. Eurasian Collared-Dove
is found in human-dominated habitats. Song Sparrow is more of a generalist, and is found in most habitats
with rich ground-level vegetation. Western Meadowlark is found in grasslands. Pacific Wren is found in wet
forests with rich undergrowth on the forest floor.

4.1 Environmental Features

We compiled features for the models representing both the surrounding environment and the observation
conditions. We constructed environmental features from a time series of radiometrically consistent, gap-
free Landsat satellite image composites. We aggregated all summertime (Julian days 183 - 243) Landsat
Collection 1 Tier 1 surface reflectance images with less than 85% cloud cover and which intersected our
study area for processing. We harmonized the Landsat Operational Land Imager data with the Landsat
Thematic Mapper and the Landsat Enhanced Thematic Mapper plus data using the reduced major axis
regression coefficients from Roy et al. 2016. We removed clouds and cloud shadows from the imagery using
the quality assessment band produced by the FMask algorithm (Zhu and Woodcock, 2012; Zhu, Wang, and
Woodcock, 2015). We composited each year’s worth of satellite imagery into a single image using the medoid
method (Flood, 2013). We computed a time series of normalized burn ratio (NBR) images from the annual
composites (Key and Benson, 1999). The LandTrendr algorithm, with the NBR time series as input, derived
a time series of gap-free, fitted imagery (see Kennedy et al. 2015 for details). We used Google Earth Engine
(Gorelick et al., 2017) for all image processing. From the time-series of fitted images 34 spectral indices were
computed. Specifically, we used three components (brightness, greenness, wetness) of Tasseled Cap - TCB,
TCG, TCW - and Tasseled Cap Angle (TCA) which captures the angle between the TCG and TCB values.

ID Environmental Features ID Environmental Features

1 aspect mean 75 15 aspect stdDev 300
2 aspect stdDev 75 16 TCA stdDev 300
3 elevation mean 75 17 TCB stdDev 300
4 elevation stdDev 75 18 TCW stdDev 300
5 slope stdDev 75 19 aspect mean 600
6 TCA mean 75 20 aspect stdDev 600
7 TCA stdDev 75 21 TCB stdDev 600
8 TCB mean 75 22 TCW stdDev 600
9 TCB stdDev 75 23 aspect mean 1200
10 TCG stdDev 75 24 aspect stdDev 1200
11 TCW stdDev 75 25 TCB stdDev 1200
12 aspect stdDev 150 26 TCW stdDev 1200
13 TCB stdDev 150 27 aspect mean 2400
14 TCW stdDev 150 28 aspect stdDev 2400

Table 2: 28 environmental features used in this paper’s experiments. The feature name indicates the land
cover index, statistics (mean/stdDev), and radius scale.

4.2 Observation Features

The observation-related features were year, day, and time of observation, to capture time-varying detectabil-
ity. In the real data experiments, the detection model had both the observation-related features and the
environmental features as inputs. Even though the environmental features did not vary across surveys, they
could affect detectability (e.g., vegetation affects how the sound of bird calls carries through forest). The
feature selection layer of the neural networks provided a mechanism for choosing a sparser set of features.
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5 Parameter Tuning Details

The hyper-parameters used for each model and the number and range of values tried per hyper-parameter
are described in Tab. 3. The optimal values are selected based on AUPRC performance on the validation
set. In this work, we assumed that the regularization weights λF (for occupancy component) and λG (for
detection component) in StatEcoNet share the same value (λF = λG = λ).

Tuning Parameter OD-LR OD-1NN StatEcoNet

learningRate {0.0001, 0.001, 0.01}
nEpoch [1− 2000] for synthetic datasets,

[1− 1000] for bird datasets
batchSize {32, all}
nNeurons {8, 16, 32} for synthetic datasets,

{16, 32, 64} for bird datasets
nLayers {1, 3}
`2,1-norm weight (λ) {0, 0.001, 0.01}
Tuning Parameter OD-BRT

shrinkage [0.1− 1]
bagFraction [0.1− 1]
nTrees [1− 1000]
treeDepth [2− 10]

Table 3: Tuning parameter values. For the first five rows, we explored combinations of these discrete values
in a grid search. For the OD-BRT parameters in the bottom three rows, we explored these ranges with
Bayesian optimization.

We found that tuning the OD-BRT parameters was computationally intensive, so we selected parame-
ters via Bayesian optimization (Snoek, Larochelle, and Adams, 2012), as implemented in the R package
rBayesianOptimization (Yan, 2016). Since grid search evaluates every combination of the set of tuning
parameters, it surely finds the best combination of those values; however, it can be inefficient to evaluate all
possible combinations. In contrast, Bayesian optimization searches for parameter values in a range, poten-
tially evaluating parameter values beyond the fixed values used in grid search. This allows for the possibility
of finding better combinations of parameter values than those specified by grid search, though it may not
always find the optimal values among all possibilities. We found that the Bayesian optimization method
found tuning parameter values with higher AUPRC than grid search in less time.
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6 Simulation Results

6.1 Linear Latent Model (ρ = 0)

6.1.1 Optimal parameters

Model Hyper-parameter
Optimal Values

100x3 100x10 1000x3 1000x10
OD-LR learningRate 0.01 0.01 0.01 0.01
OD-1NN learningRate 0.001 0.001 0.001 0.001

batchSize 32 32 32 32
nNeurons 16 16 16 32

StatEcoNet learningRate 0.001 0.001 0.001 0.001
batchSize all 32 32 32
nNeurons 8 8 8 8
nLayers 1 3 1 3

λ 0 0.01 0.01 0.01
OD-BRT shrinkage 0.2399 0.3629 0.1407 0.123

bagFraction 0.6279 0.5107 0.8759 0.4817
treeDepth 2 2 4 6

Table 4: Optimal parameters for linear latent models.

6.1.2 Predictive performance

Our model comparisons on simulated data with linear feature combinations indicates that the linear model,
OD-LR, performs best on linear data, as expected. However, it is rare that all feature relationships would be
linear and that the modeler would know this in advance. Considering the more general case with unknown
feature relationships, the results show that StatEcoNet performs similarly to OD-LR for recovering the
true model probabilities (Tab. 5 correlation columns), predicting new data (Tab. 5 AUPRC and AUROC
columns), and selecting the correct features (Fig. 1c). The OD-1NN and OD-BRT models exhibit problems
on some datasets, notably with detection probability correlations (Tab. 5) and occupancy feature selection
(Fig. 1b).

Data size Method Training Time Occ.Prob.Corr. Det.Prob.Corr. AUPRC AUROC

OD-LR 4.58 ± 3.62 0.91 ± 0.03 0.96 ± 0.02 0.63 ± 0.004 0.84 ± 0.002
M = 100 OD-1NN 9.87 ± 2.54 0.86 ± 0.03 0.82 ± 0.02 0.59 ± 0.01 0.81 ± 0.004
T = 3 OD-BRT 3.44 ± 2.47 0.78 ± 0.02 0.84 ± 0.02 0.57 ± 0.01 0.80 ± 0.01

StatEcoNet 11.29 ± 3.62 0.87 ± 0.02 0.95 ± 0.01 0.62 ± 0.01 0.83 ± 0.01

OD-LR 6.16 ± 3.53 0.93 ± 0.01 0.98 ± 0.01 0.71 ± 0.003 0.87 ± 0.002
M = 100 OD-1NN 10.10 ± 5.78 0.92 ± 0.03 0.93 ± 0.01 0.67 ± 0.01 0.85 ± 0.01
T = 10 OD-BRT 2.66 ± 4.07 0.81 ± 0.03 0.88 ± 0.05 0.62 ± 0.03 0.81 ± 0.02

StatEcoNet 3.51 ± 0.85 0.93 ± 0.02 0.97 ± 0.01 0.70 ± 0.01 0.87 ± 0.004

OD-LR 20.65 ± 7.60 0.99 ± 0.0001 1.00 ± 0.0002 0.68 ± 0.0003 0.86 ± 0.0001
M = 1000 OD-1NN 6.75 ± 0.67 0.98 ± 0.002 0.98 ± 0.004 0.66 ± 0.004 0.86 ± 0.001
T = 3 OD-BRT 1.19 ± 0.85 0.77 ± 0.05 0.75 ± 0.02 0.53 ± 0.03 0.76 ± 0.02

StatEcoNet 9.79 ± 5.57 0.98 ± 0.002 1.00 ± 0.001 0.68 ± 0.001 0.86 ± 0.001

OD-LR 12.82 ± 8.33 0.99 ± 0.003 1.00 ± 0.0004 0.68 ± 0.001 0.87 ± 0.001
M = 1000 OD-1NN 6.06 ± 1.21 0.99 ± 0.002 0.99 ± 0.001 0.67 ± 0.001 0.86 ± 0.001
T = 10 OD-BRT 5.88 ± 1.23 0.86 ± 0.02 0.79 ± 0.01 0.53 ± 0.01 0.78 ± 0.01

StatEcoNet 5.04 ± 2.34 0.99 ± 0.003 0.99 ± 0.001 0.68 ± 0.002 0.86 ± 0.001

Table 5: Performance metrics (mean ± st. dev.) on simulated data with linear relationships.
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(c) M=1000, T=3 (λ=0.01)
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(d) M=1000, T=10 (λ=0.01)

Figure 1: Selected features by each method for the synthetic dataset with linear relationships. The red bars
correspond to relevant features, and the blue bars irrelevant features. M is the number of training sites and
T is the number of visits per site. λ is the optimal regularization weights for λF and λG. The second plot of
OD-1NN is not available here because survey features are combined with outputs of a hidden layer from that
method. The horizontal black line indicates the top 5 features according to the importance scores (y-axis).
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6.2 Nonlinear Latent Model (ρ = 1)

6.2.1 Optimal parameters

Model Hyper-parameter
Optimal Values

100x3 100x10 1000x3 1000x10
OD-LR learningRate 0.01 0.01 0.01 0.01
OD-1NN learningRate 0.001 0.001 0.001 0.001

batchSize all all 32 32
nNeurons 16 16 32 8

StatEcoNet learningRate 0.001 0.001 0.001 0.001
batchSize 32 32 all all
nNeurons 32 8 16 16
nLayers 3 1 3 3

λ 0.001 0.001 0.01 0.01
OD-BRT shrinkage 0.9440 0.3320 0.5149 0.4040

bagFraction 0.1435 0.6444 0.7826 0.7499
treeDepth 5 9 2 3

Table 6: Optimal parameters for nonlinear latent models.

6.2.2 Predictive performance

On the simulation experiments where the data generation uses nonlinear feature combinations, StatEcoNet
performs well. On only the smallest datasets (M = 100), it is outperformed by OD-BRT in terms of recovering
the occupancy and detection probabilities as well as predicting new data (Tab. 7). On the larger datasets
(M = 1000), StatEcoNet performs as well or better than OD-BRT, and the training time starts to favor
StatEcoNet heavily as dataset sizes increase. On these larger datasets, StatEcoNet also has an advantage
for feature selection.

Data size Method Training Time Occ.Prob.Corr. Det.Prob.Corr. AUPRC AUROC

OD-LR 0.40 ± 0.50 -0.002 ± 0.02 0.003 ± 0.01 0.29 ± 0.004 0.50 ± 0.004
M = 100 OD-1NN 5.77 ± 12.33 0.05 ± 0.07 -0.01 ± 0.02 0.29 ± 0.01 0.50 ± 0.02
T = 3 OD-BRT 1.48 ± 1.07 0.38 ±0.11 0.55 ±0.15 0.37 ± 0.03 0.60 ± 0.02

StatEcoNet 4.91 ± 6.85 0.1 ± 0.12 0.16 ± 0.21 0.31 ± 0.03 0.53 ± 0.04

OD-LR 0.90 ± 0.52 -0.003 ± 0.02 0.01 ± 0.004 0.39 ± 0.01 0.51 ± 0.01
M = 100 OD-1NN 16.13 ± 16.08 0.11 ± 0.15 0. ± 0.01 0.39 ± 0.01 0.52 ± 0.01
T = 10 OD-BRT 8.07 ± 0.88 0.59 ± 0.01 0.80 ± 0.01 0.53 ± 0.002 0.66 ± 0.01

StatEcoNet 39.57 ± 50.71 0.03 ± 0.08 0.31 ± 0.38 0.42 ± 0.06 0.55 ± 0.07

OD-LR 1.21 ± 1.21 -0.02 ± 0.04 -0.01 ± 0.03 0.35 ± 0.01 0.50 ± 0.01
M = 1000 OD-1NN 18.96 ± 2.47 0.73 ± 0.02 -0.02 ± 0.01 0.42 ± 0.01 0.59 ± 0.01
T = 3 OD-BRT 28.77 ± 22.9 0.79 ± 0.03 0.88 ± 0.04 0.55 ± 0.01 0.70 ± 0.01

StatEcoNet 25.85 ± 14.16 0.54 ± 0.04 0.90 ± 0.03 0.53 ± 0.02 0.70 ± 0.01

OD-LR 3.66 ± 3.11 s 0.05 ± 0.001 0.01 ± 0.001 0.32 ± 0.002 0.51 ± 0.001
M = 1000 OD-1NN 30.3 ± 5.15 s 0.84 ± 0.01 0.004 ± 0.003 0.39 ± 0.004 0.61 ± 0.01
T = 10 OD-BRT 320 ± 60.6 s 0.83 ± 0.01 0.97 ± 0.002 0.53 ± 0.003 0.72 ± 0.002

StatEcoNet 94.2 ± 17.5 s 0.84 ± 0.01 0.97 ± 0.003 0.53 ± 0.001 0.73 ± 0.003

Table 7: Performance metrics (mean ± st. dev.) on simulated data with nonlinear relationships.
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(b) M=100, T=10 (λ=0.001)

0 5
Site features

0.0

0.1

Co
ef

f. 
siz

e

0 5
Survey features

0.00

0.05

0.10

0 5
Site features

0

1

2

L2
 n

or
m

Not Applicable

0 5
Site features

0

10

20

Se
le

ct
io

n#

0 5
Survey features

0

20

0 5
Site features

0.00

0.25

0.50

L2
 n

or
m

0 5
Survey features

0.0

0.5

OD
-L

R
OD

-1
NN

OD
-B

RT
St

at
Ec

oN
et

(c) M=1000, T=3 (λ=0.01)
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Figure 2: Selected features by each method for the synthetic dataset with nonlinear relationships. The red
bars correspond to relevant features, and the blue bars irrelevant features. M is the number of training sites
and T is the number of visits per site. λ is the optimal regularization weights for λF and λG. The second
plot of OD-1NN is not available here because survey features are combined with outputs of a hidden layer
from that method. The horizontal black line indicates the top 5 features according to the importance scores
(y-axis).
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7 Avian Point Count Results

Each subsection below reports more detailed results for each of the five species. Each section gives a histogram
of the learned occupancy and detection probabilities, feature importances for the occupancy and detection
models across methods, and the optimal hyperparameters that resulted from the tuning process.

There are a few overall trends in the avian point count study results to point out. First, the differences
between methods in terms of AUPRC and AUROC are minor (Table 8), even though the interpretations of
the learned models vary substantially (visualizations in species-specific subsections below). (The results of
OD-1NN and StatEcoNet have been updated from the main paper with some small changes to the parameter
tuning; the main trends are unchanged.) Second, OD-BRT sometimes produces probability histograms that
are concentrated around 0.5. These seem unrealistic and appear underfit, despite careful parameter tuning.
Third, note that the detection feature importance plots are missing for OD-1NN for all species because this
inference is not available from that method due to the architecture of the neural network.

There are also a few things to consider when viewing the probability histograms below. First, the
upper left corners should be interpreted loosely. As the occupancy probability for a given point approaches
zero, the contribution of the detection model for that point gets less influence in the likelihood function.
Second, variation in detection probability is often biologically plausible (with some exceptions). Finally, for
specialists, a low or bimodal distribution of occupancy probabilities for the non-detections makes sense, since
sites will be obviously suitable or unsuitable, and some suitable sites may have non-detections.

Species Metric OD-LR OD-1NN OD-BRT StatEcoNet

COYE AUPRC 0.375 ± 0.0614 0.376 ± 0.0495 0.369 ± 0.0458 0.383 ± 0.0519
EUCD AUPRC 0.208 ± 0.0462 0.272 ± 0.0462 0.183 ± 0.0453 0.283 ± 0.0610
SOSP AUPRC 0.563 ± 0.0230 0.567 ± 0.0311 0.558 ± 0.0322 0.571 ± 0.021

WEME AUPRC 0.559 ± 0.132 0.545 ± 0.1269 0.634 ± 0.0665 0.593±0.1049
PAWR AUPRC 0.474 ± 0.0382 0.461 ± 0.0311 0.473 ± 0.0348 0.496 ± 0.0314

COYE AUROC 0.834 ± 0.0355 0.836 ± 0.0229 0.834 ± 0.0404 0.828 ± 0.0375
EUCD AUROC 0.756 ± 0.0325 0.809 ± 0.03 0.72 ± 0.0709 0.809 ± 0.021
SOSP AUROC 0.797 ± 0.0175 0.801 ± 0.0192 0.802 ± 0.0185 0.803 ± 0.0152

WEME AUROC 0.881 ± 0.0516 0.891 ± 0.0416 0.912 ± 0.0283 0.910 ± 0.0292
PAWR AUROC 0.858 ± 0.0178 0.865 ± 0.0218 0.868 ± 0.0309 0.875 ± 0.026

Table 8: Predictive performance of methods for five bird species.

7.1 Common Yellowthroat (COYE)

Common Yellowthroat (COYE) is found in extremely wet vegetation with little canopy cover. Like all
songbirds, it sings more in the early morning than later in the day, so it is more frequently detected on early
surveys.

Figure 3 shows two-dimensional histograms of the occupancy and detection probabilities for all positive
species reports (detections, y = 1) in the top row, and all negative species reports (non-detections, y = 0) in
the bottom row. The concentration of negatives in the lower left corner of the histograms of StatEcoNet
and OD-1NN may reflect the fact that much of the surveyed points are not suitable habitat for this species,
so many occupancy probabilities should be low. In contrast, OD-LR is less believable, with many negatives
having high occupancy probability, implying that the species was missed more frequently than is realistic.
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Figure 3: Histograms for Common Yellowthroat. The top row shows the occupancy and detection prob-
ability histograms for positives (detections, y = 1), and the bottom row shows the same for negatives
(non-detections, y = 0).

12



Figures 4 and 5 show the top five most important variables learned by each method for COYE. Mean
elevation was consistently among the top site features, which fits with field observations that this species
utilizes wetland and riparian habitats. Such habitats of sufficient size for this species are often found at
lower elevations. Inclusion of standard deviations of TCA and TCW probably relate to the contrast between
reflectance of water versus adjacent wetland habitats.
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Figure 4: Occupancy feature importances for Common Yellowthroat. The top five features per method
per fold are plotted. Note that the x-axes differ across methods. The feature corresponding to the mean
elevation at the 75 m scale (chosen as an example feature that is important for StatEcoNet) is shaded red
to highlight differences across methods.
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Figure 5: Detection feature importances for Common Yellowthroat. The top five features per method per fold
are plotted. Note that the x-axes differ across methods. The feature corresponding to the mean elevation at
the 75 m scale (chosen as an example feature that is important for StatEcoNet) is shaded red to highlight
differences across methods. OD-1NN is not included here because the importance of environmental features
to the detection model is not available from that method.

Model Hyper-parameter
Optimal Values

Fold 1 Fold 2 Fold 3
OD-LR learningRate 0.01 0.01 0.01
OD-1NN learningRate 0.001 0.001 0.001

batchSize 32 32 32
nNeurons 32 64 16

StatEcoNet learningRate 0.001 0.001 0.001
batchSize 32 32 32
nNeurons 32 64 32
nLayers 1 3 1

λ 0 0.001 0.001
OD-BRT shrinkage 0.7274 0.4756 0.2038

bagFraction 0.4633 0.9526 0.9429
treeDepth 3 10 10

Table 9: Optimal parameters per fold for Common Yellowthroat
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7.2 Eurasian Collared-Dove (EUCD)

Eurasian Collared-Dove (EUCD) is found in human-dominated habitats. When present, it is usually easy
to identify both visually and aurally. However, in noisy urban areas, its calls may be drowned out by other
sounds.

Figure 6 shows two-dimensional histograms of the occupancy and detection probabilities for all positive
species reports (detections, y = 1) in the top row, and all negative species reports (non-detections, y = 0)
in the bottom row. Here, the bimodality of the occupancy probabilities (OD-LR, OD-1NN, StatEcoNet)
makes sense, as human-dominated habitats are relatively easy to distinguish. StatEcoNet shows most
detections as having high occupancy and detection probabilities, most non-detections with low occupancy
and detection probabilities; this makes sense for a highly-detectable bird with an easily distinguishable
habitat. The secondary concentration of sites that are highly likely to be occupied but with very low
detection probabilities could be sites where noise pollution impedes detection.
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Figure 6: Histograms for Eurasian Collared-Dove.

15



Figures 7 and 8 show the top five most important variables learned by each method for EUCD. Eurasian
Collared-Doves tend to be most numerous around small homesteads (barns, homes) surrounded by agricul-
tural habitats, which is reflected in the identification of TCW standard deviations as important site features.
They also are numerous in suburbanized settings, which are captured well by TCA and TCB.
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Figure 7: Occupancy feature importances for Eurasian Collared-Dove. The top five features per method per
fold are plotted. Note that the x-axes differ across methods. The feature corresponding to the mean TCA at
the 75 m scale (chosen as an example feature that is important for StatEcoNet) is shaded red to highlight
differences across methods.

16



0 1
Coeff. size

elevation_stdDev_75
TCW_stdDev_150

elevation_mean_75
year

TCA_stdDev_300
Su

rv
ey

 F
ea

tu
re

s

0 1
Coeff. size

aspect_mean_1200
aspect_mean_2400

elevation_stdDev_75
TCA_stdDev_300
TCG_stdDev_75

Su
rv

ey
 F

ea
tu

re
s

0.00 0.25
Coeff. size

aspect_stdDev_2400
aspect_mean_1200

TCA_mean_75
year

TCB_stdDev_600

Su
rv

ey
 F

ea
tu

re
s

0 2000
Selection#

TCG_stdDev_75
aspect_mean_600

elevation_mean_75
aspect_mean_75

time

Su
rv

ey
 F

ea
tu

re
s

0 2000
Selection#

elevation_stdDev_75
aspect_stdDev_75

day
aspect_mean_75

time

Su
rv

ey
 F

ea
tu

re
s

0 2000
Selection#

aspect_stdDev_75
TCA_mean_75

aspect_mean_75
elevation_mean_75

time

Su
rv

ey
 F

ea
tu

re
s

0.0 0.5
L2 norm

aspect_mean_600
TCB_stdDev_1200

year
TCB_stdDev_150
TCW_stdDev_600

Su
rv

ey
 F

ea
tu

re
s

0 1
L2 norm

aspect_stdDev_300
aspect_stdDev_75

TCB_mean_75
time
year

Su
rv

ey
 F

ea
tu

re
s

0.0 0.5
L2 norm

TCW_stdDev_75
elevation_mean_75

TCA_mean_75
aspect_stdDev_2400

year

Su
rv

ey
 F

ea
tu

re
s

Detection Important Features
Fold 1 Fold 2 Fold 3

OD
-L

R
OD

-B
RT

St
at

Ec
oN

et

Figure 8: Detection feature importances for Eurasian Collared-Dove. The top five features per method per
fold are plotted. Note that the x-axes differ across methods. The feature corresponding to the year (chosen
as an example feature that is important for StatEcoNet) is shaded red to highlight differences across
methods. OD-1NN is not included here because the importance of environmental features to the detection
model is not available from that method.

Model Hyper-parameter
Optimal Values

Fold 1 Fold 2 Fold 3
OD-LR learningRate 0.01 0.01 0.01
OD-1NN learningRate 0.001 0.001 0.001

batchSize all 32 32
nNeurons 64 64 16

StatEcoNet learningRate 0.001 0.001 0.001
batchSize 32 32 32
nNeurons 64 32 16
nLayers 3 3 3

λ 0.001 0 0.001
OD-BRT shrinkage 0.8073 0.4250 0.8064

bagFraction 0.7758 0.7055 0.9508
treeDepth 10 7 8

Table 10: Optimal parameters per fold for Eurasian Collared-Dove
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7.3 Song Sparrow (SOSP)

Song Sparrow (SOSP) is found in most habitats with rich ground-level vegetation. It is usually in wet areas,
occasionally restricted to riparian zones, but also found in residential areas with lush vegetation. It can be
quite prevalent in some habitats.

Figure 9 shows two-dimensional histograms of the occupancy and detection probabilities for all positive
species reports (detections, y = 1) in the top row, and all negative species reports (non-detections, y = 0)
in the bottom row. Here, the OD-BRT histogram of non-detections concentrating on very low occupancy
probabilities seems to imply that almost all of the occupied sites had detections; this is improbable. For
the other models, the bimodality of the non-detection occupancy probabilities indicates that the models are
finding good separation between habitat and non-habitat and explaining non-detections in good habitat with
low detection probabilities.
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Figure 9: Histograms for Song Sparrow.
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Figures 10 and 11 show the top five most important variables learned by each method for SOSP. Song
Sparrows are widely distributed common species associated with riparian habitats, suburban habitats and
early successional habitats. Most approaches accurately detected that Song Sparrows most often occur at
lower elevations. Because they occupy a wide variety of habitats, specific habitat reflectance features did
not consistently emerge across the four analytical approaches, although consistency across the 3 folds was
better for StatEcoNet.
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Figure 10: Occupancy feature importances for Song Sparrow. The top five features per method per fold are
plotted. Note that the x-axes differ across methods. The feature corresponding to the mean elevation at
the 75 m scale (chosen as an example feature that is important for StatEcoNet) is shaded red to highlight
differences across methods.
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Figure 11: Detection feature importances for Song Sparrow. The top five features per method per fold
are plotted. Note that the x-axes differ across methods. The feature corresponding to the mean elevation
(chosen as an example feature that is important for StatEcoNet) is shaded red to highlight differences
across methods. OD-1NN is not included here because the importance of environmental features to the
detection model is not available from that method.

Model Hyper-parameter
Optimal Values

Fold 1 Fold 2 Fold 3
OD-LR learningRate 0.01 0.01 0.01
OD-1NN learningRate 0.001 0.001 0.001

batchSize 32 all 32
nNeurons 16 32 16

StatEcoNet learningRate 0.001 0.001 0.001
batchSize 32 32 32
nNeurons 64 16 16
nLayers 1 3 3

λ 0.01 0.01 0.01
OD-BRT shrinkage 0.6779 0.6801 0.8664

bagFraction 0.9158 0.2259 0.7236
treeDepth 3 4 5

Table 11: Optimal parameters per fold for Song Sparrow
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7.4 Western Meadowlark (WEME)

Western Meadowlark (WEME) strongly specializes on grasslands. Grassland habitat should be more easily
distinguishable from our remotely sensed features than some other habitat types (e.g., different types of
forest). WEME is one of the most available species for detection in the early morning and can be heard from
1 km away. Since all counts in this dataset were conducted in the morning, high detection probabilities for
positive observations make sense.

Figure 12 shows two-dimensional histograms of the occupancy and detection probabilities for all positive
species reports (detections, y = 1) in the top row, and all negative species reports (non-detections, y = 0)
in the bottom row. The StatEcoNet histograms here are quite concentrated, but this may reflect the
high detectability of this species and the ease with which its habitat is distinguished by the remote sensing
features. The non-detections with high occupancy probability and low detection probability (lower right
corner) may be areas of the Willamette valley that do have grassland habitat, but that do not host WEME
because they are only small patches of grassland; these would appear to the model as highly likely to be
occupied but with low detection probability.
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Figure 12: Histograms for Western Meadowlark.
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Figures 13 and 14 show the top five most important variables learned by each method for WEME. Western
Meadowlarks inhabit grasslands and sagebrush of large extent, avoiding smaller patches or tracts composed
largely of agricultural grasslands. Emergence of mean TCA at small buffers (75 m) possibly is related to
habitat quality as greenness (moist, productive grasslands) is an important contributor to TCA.
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Figure 13: Occupancy feature importances for Western Meadowlark. The top five features per method per
fold are plotted. Note that the x-axes differ across methods. The feature corresponding to the mean TCA at
the 75 m scale (chosen as an example feature that is important for StatEcoNet) is shaded red to highlight
differences across methods.
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Figure 14: Detection feature importances for Western Meadowlark. The top five features per method per fold
are plotted. Note that the x-axes differ across methods. The feature corresponding to the day (chosen as an
example feature that is important for StatEcoNet) is shaded red to highlight differences across methods.
OD-1NN is not included here because the importance of environmental features to the detection model is not
available from that method.

Model Hyper-parameter
Optimal Values

Fold 1 Fold 2 Fold 3
OD-LR learningRate 0.01 0.01 0.01
OD-1NN learningRate 0.001 0.001 0.001

batchSize all 32 32
nNeurons 16 64 64

StatEcoNet learningRate 0.001 0.001 0.001
batchSize 32 32 32
nNeurons 32 64 32
nLayers 3 1 1

λ 0.01 0.01 0.01
OD-BRT shrinkage 0.2121 0.7199 0.4600

bagFraction 0.8853 0.7763 0.2401
treeDepth 2 6 10

Table 12: Optimal parameters per fold for Western Meadowlark
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7.5 Pacific Wren (PAWR)

This is the example from the main text, repeated here for completeness. In Fig. 15, the OD-BRT plots show
that many of the model probabilities are highly clustered around 0.5. This seems to indicate underfitting
and is biologically unrealistic. The OD-LR and OD-1NN histograms did exhibit high frequencies at the upper
right and lower left corners for the detection and non-detection events, respectively. However, the events
and the learned models are concentrated in a relatively small number of grid cells, making the histograms
spiky. This may be pathological since it ties the detected/undetected events with a small number of ôi and

d̂it—but different sites and surveys may admit a large variety of ôi and d̂it in reality. Hence, although these
models could have good estimates for the product ôid̂it (and thus similar AUPRCs to StatEcoNet), the

individual estimates ôi and d̂it may not be insightful for ecologists. Encouragingly, the histograms from
StatEcoNet show more variability—the probabilities concentrate in the desired regions but also gracefully
spread out. This is more likely to be the case in practice.
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Figure 15: Histograms for Pacific Wren.
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Figures 16 and 17 show the top five most important variables learned by each method for PAWR.
Inhabiting moist forests, often near riparian zones, Pacific Wrens occupy north-facing slopes that retain
moisture later into the dry Pacific Northwest summers. The inclusion of TCA, which captures greenness
and brightness, and TCW, capturing correlates of moisture, fits well. The occurrence of aspect also suggests
non-random selection of locations in mountainous landscapes by Pacific Wrens.
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Figure 16: Occupancy feature importances for Pacific Wren. The top five features per method per fold are
plotted. Note that the x-axes differ across methods. The feature corresponding to the mean TCA at the
75 m scale (chosen as an example feature that is important for StatEcoNet) is shaded red to highlight
differences across methods.
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Figure 17: Detection feature importances for Pacific Wren. The top five features per method per fold are
plotted. Note that the x-axes differ across methods. The feature corresponding to the time (chosen as an
example feature that is important for StatEcoNet) is shaded red to highlight differences across methods.
OD-1NN is not included here because the importance of environmental features to the detection model is not
available from that method.

Model Hyper-parameter
Optimal Values

Fold 1 Fold 2 Fold 3
OD-LR learningRate 0.01 0.01 0.01
OD-1NN learningRate 0.001 0.001 0.001

batchSize all all all
nNeurons 64 64 32

StatEcoNet learningRate 0.001 0.001 0.001
batchSize 32 all 32
nNeurons 64 16 16
nLayers 3 1 1

λ 0.01 0 0.001
OD-BRT shrinkage 0.100 0.100 0.4628

bagFraction 1.0000 0.4268 0.3946
treeDepth 4 2 3

Table 13: Optimal parameters per fold for Pacific Wren
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8 Computing Infrastructure

Hardware
CPU

# of Cores 4
# of Threads 8
Model Intel(R) Xeon(R) CPU E3-1230 v5 @ 3.40GHz

Memory 16 GB
Operating System CentOS Linux 7

Software

Python 3.8.3

Python libraries

torch 1.5.1
numpy 1.19.1
pandas 1.0.5
matplotlib 3.3.0
tqdm 4.48.0
scikit-learn 0.23.1
scipy 1.5.2
jupyterlab 2.2.1
import-ipynb 0.1.3

R 4.0.2

R libraries

grt 0.2.1
reshape2 1.4.4
PRROC 1.3.1
Metrics 0.1.4
paramtest 0.1.0
Rcpp 1.0.5
scales 1.1.1
dplyr 1.0.1
ggplot2 3.3.2
patchwork 1.0.1
blockCV 2.1.1
raster 3.3-13
sf 0.9-5

Table 14: Computing infrastructure specification.
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9 Reproducibility Checklist

• This paper clearly states what claims are being investigated. (Yes)

• This paper explains how the results substantiate the claims. (Yes)

• This paper explicitly identifies limitations or technical assumptions. (Yes)

• This paper clearly states what claims are being investigated. (Yes)

• This paper explains how the results substantiate the claims. (Yes)

• This paper explicitly identifies limitations or technical assumptions. (Yes)

• This paper includes a conceptual outline and/or pseudocode description of AI & methods introduced.
(Yes)

• Does this paper rely on one or more data sets? (Yes)

– All novel datasets introduced in this paper are included in a data appendix. (will be released
upon publication)

– All novel datasets introduced in this paper will be made publicly available upon publication of
the paper with a license that allows free usage for research purposes. (Yes)

– All datasets drawn from the existing literature (potentially including authors’ own previously
published work) are accompanied by appropriate citations. (Yes)

– All datasets drawn from the existing literature (potentially including authors’ own previously
published work) are publicly available. (Yes)

– All datasets that are not publicly available are described in detail. (Yes)

• Does this paper include computational experiments? (Yes)

– All source code required for conducting experiments is included in a code appendix. (will be
released upon publication)

– All source code required for conducting experiments will be made publicly available upon publi-
cation of the paper with a license that allows free usage for research purposes. (Yes)

– If an algorithm depends on randomness, then the method used for setting seeds is described in a
way sufficient to allow replication of results. (no method used for setting seeds)

– This paper specifies the computing infrastructure used for running experiments (hardware and
software), including GPU/CPU models; amount of memory; operating system; names and versions
of relevant software libraries and frameworks. (Yes)

– This paper formally describes evaluation metrics used and explains the motivation for choosing
these metrics. (Yes)

– This paper states the number of algorithm runs used to compute each reported result. (Yes)

– Analysis of experiments goes beyond single-dimensional summaries of performance (e.g., average;
median) to include measures of variation, confidence, or other distributional information. (Yes)

– This paper lists all final (hyper-)parameters used for each model/algorithm in the paper’s exper-
iments. (Yes)

– This paper states the number and range of values tried per (hyper-)parameter during development
of the paper, along with the criterion used for selecting the final parameter setting. (Yes)
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